Paper Title :Classification Electromyography Sensor for Hand Gesture Recognition with Neural Network using Correlation-based Feature Selection
Author :Farouq Faisal Anam, Handri Santoso
Article Citation :Farouq Faisal Anam ,Handri Santoso ,
(2018 ) " Classification Electromyography Sensor for Hand Gesture Recognition with Neural Network using Correlation-based Feature Selection " ,
International Journal of Electrical, Electronics and Data Communication (IJEEDC) ,
pp. 10-14,
Volume-6,Issue-7
Abstract : In this paper, we will present a research about hand gesture pattern recognition using electromyography sensors.
Data collection process will take 100 samples in time domain data for each gesture, then transformed into frequency domain
data and feature extraction to get 18 features. After getting the features, we will perform feature selection with Correlationbased
Feature Selection (CFS) to reduce the total features and improve the accuracy of the classification algorithm used,
which is the neural network. The analysis process will show the accuracy value of gestures used.
Index Terms- Electromyography Sensor, Feature Selection, Neural Network, Pattern Recognition.
Type : Research paper
Published : Volume-6,Issue-7
DOIONLINE NO - IJEEDC-IRAJ-DOIONLINE-13001
View Here
Copyright: © Institute of Research and Journals
|
|
| |
|
PDF |
| |
Viewed - 81 |
| |
Published on 2018-09-03 |
|