International Journal of Electrical, Electronics and Data Communication (IJEEDC)
eISSN:2320-2084 , pISSN:2321-2950
.
Follow Us On :
current issue
Volume-10,Issue-12  ( Dec, 2022 )
ARCHIVES
  1. Volume-10,Issue-11  ( Nov, 2022 )
  2. Volume-10,Issue-10  ( Oct, 2022 )
  3. Volume-10,Issue-9  ( Sep, 2022 )

Statistics report
Feb. 2023
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 120
Paper Published : 1629
No. of Authors : 4471
  Journal Paper


Paper Title :
Unsupervised Nonlinear Feature Extraction Method And Its Effects On Target Detection In High-Dimensional Data

Author :Hamidullah Binol, Faruk S. Uslu, Abdullah Bal

Article Citation :Hamidullah Binol ,Faruk S. Uslu ,Abdullah Bal , (2015 ) " Unsupervised Nonlinear Feature Extraction Method And Its Effects On Target Detection In High-Dimensional Data " , International Journal of Electrical, Electronics and Data Communication (IJEEDC) , pp. 43-46, Volume-3, Issue-8

Abstract : The principal component analysis (PCA) is one of the most effective unsupervised techniques for feature extraction. To extract higher order properties of data, researchers extended PCA to kernel PCA (KPCA) by means of kernel machines. In this paper, KPCA is applied as a feature extraction procedure to dimension reduction for target detection as a preprocessing on hyperspectral images. Then the detection was done with a support vector data description (SVDD) algorithm which is another type of one-class support vector machines (SVMs). The SVDD constructs a minimum hypersphere enclosing the target objects as much as possible. For the supervised learning, SVDD has been trained with a training set which has been chosen from target class. Balanced classification rate (BCR) and F-measure have been used to evaluate the performance of proposed technique against full-band target detection. The experimental results on hyperspectral data from the HYDICE sensors show that the KPCA based dimension reduction offers high performance for target detection applications by SVDD. Index Terms—Feature extraction, hyperspectral imagery, kernel principal component analysis, support vector data description, target detection.

Type : Research paper

Published : Volume-3, Issue-8


DOI - 10.18479/ijeedc/2015/v3i8/48353

Copyright: © Institute of Research and Journals

| PDF |
Viewed - 124
| Published on 2015-08-05
   
   
IRAJ Other Journals
IJEEDC updates
Volume-10,Issue-11(Nov ,2022) Want to join us ? CLick here http://ijeedc.iraj.in/join_editorial_board.php
The Conference World

JOURNAL SUPPORTED BY

ADDRESS

Technical Editor, IJEEDC
Department of Journal and Publication
Plot no. 30, Dharma Vihar,
Khandagiri, Bhubaneswar, Odisha, India, 751030
Mob/Whatsapp: +91-9040435740