Paper Title :Application of Cepstrum and Neural Network For Induction Motor Fault Diagnosis
Author :Nutan Babhale, Anjali Jawadekar
Article Citation :Nutan Babhale ,Anjali Jawadekar ,
(2017 ) " Application of Cepstrum and Neural Network For Induction Motor Fault Diagnosis " ,
International Journal of Electrical, Electronics and Data Communication (IJEEDC) ,
pp. 50-54,
Volume-5,Issue-2
Abstract : Induction motors are vulnerable to many faults which results in becoming catastrophic and cause production
shutdown, personal injuries and wastage of raw materials. Thus it is important to prevent the faulty conditions at the initial
stages so as to avoid any type of failure in the system. This paper is dealing with the rotor bar fault of the induction motor.
The possibility of occurrence of rotor bar faults is about 10 % of all total induction motor faults and is caused by the rotor
winding. Condition monitoring and fault diagnosis of an induction motor is important in the production line. It can reduce
the cost of maintenance and risk of unexpected failures by allowing the early detection of failures. This work documents
experimental results for broken rotor bar fault detection in induction motors using cepstrum analysis and artificial neural
network based approach. . It has found that a combination of cepstrum plus neural network analysis is very useful tool for
fault diagnosis of induction motor. A feedforward neural network was used for rotor bar fault based on fault features
extracted using cepstrum analysis.
Keywords— Cepstrum Analysis, Artificial Neural Network, Induction Motor, Rotor Bar Fault.
Type : Research paper
Published : Volume-5,Issue-2
DOIONLINE NO - IJEEDC-IRAJ-DOIONLINE-6991
View Here
Copyright: © Institute of Research and Journals
|
 |
| |
 |
PDF |
| |
Viewed - 75 |
| |
Published on 2017-04-12 |
|