Paper Title
Modular Building Construction Using GFRP

Abstract
The study is part of the MOOVABAT project aimed at defining innovative technological buildings with low environmental impact and characterised by the capacity to constantly adapt with the changing of their users’ needs. In this context, the mechanical performance of a fibre-reinforced polymer (FRP) frame, chosen as structural solution for the building assembly, was investigated. Specifically, the research study aims at experimentally define the moment-rotation behaviour of screw connected joints by using steel plates. To this purpose two different configurations, beam-to-column joint and a whole portal frame, were tested to evaluate the strength and the stiffness of the connection. In addition, the beam-to-column element was also subjected to cyclic loads to assess the joint energy dissipation capacity. The experimental results show that the strength of the connection is higher than that required to satisfy both SLS and ULS loading conditions. Moreover, it also provided an accurate characterisation of the semi-rigid connection useful for designing purposes and raising the possibility of considering an optimisation of the system. All in all, with respect to mechanical aspects, the study confirms the suitability of pultrude FRP element assemblies for modular building applications and paves the way for further analysis aimed at enhancing their efficiency. Keywords - Composite Structure, Beam-To-Column Connection, Pultruded Fibre-Reinforced Polymer (FRP), Portal Frame Joints, MOOVABAT project.