Abstract: DSTATCOM is one of the equipments for voltage sag mitigation in power systems. Voltage sag has been considered as one of the most harmful power quality problem as it may significantly affect industrial production. This paper presents an Artificial Neuro fuzzy inference system (ANFIS) based approach for optimal placement of Distribution Static Compensator (DSTATCOM) to mitigate voltage sag under faults. Voltage sag under different type of short circuits has been estimated using MATLAB/SIMULINK software. Optimal location of DSTATCOM has been obtained using a feed forward neural network trained by post-fault voltage magnitude of three phases at different buses. Case studies have been performed on IEEE 30-bus system and effectiveness of proposed approach of DSTATCOM placement has been established.

Keywords: Power quality, Voltage sag mitigation, DSTATCOM, ANFIS.

I. INTRODUCTION

Power quality is one of the most important topics that electrical engineers have been noticed in recent years. Voltage sag is one of the problems related to power quality. This phenomenon happens continuously in transmission and distribution systems. During a voltage sag event, amplitude of the effective load voltage decrease from 0.9 of the nominal load voltage to 0.1 in very short time (less than one minute). Short circuit, transformer energizing, capacitor bank charging etc are causes of voltage sag. Most industries and companies prefer electrical energy with high quality. If delivered energy to these loads has poor quality, products and equipment of these loads such as microcontrollers, computers, motor drives etc are damaged. Hurt of this phenomenon in companies that dealing with information technology systems is serious. According to a study in U.S., total damage by voltage sag amounts to 400 Billion Dollars. For these reasons Power quality mitigation in power systems is necessary. Nowadays, Custom Power equipments are used for this purpose. DSTATCOM is one of these equipments which can be installed in parallel with Consumer awareness regarding reliable power supply has been growing day by day. Power quality is most common concern for power utilities as well as for consumers. Today, the world needs increased amount of quality power for its growing population and industrial growth. Voltage sag is a frequently occurring power quality problem. Voltage sag has been defined as reduction in the root mean square (RMS) voltage in the range of 0.1 to 0.9 per unit (p.u.) for duration greater than half a cycle and less than one minute. It may be caused by faults, increased load demand and transitional events such as large motor switching. Voltage sags (also known as voltage dips) can cause loss of production in automated processes, since a voltage sag can trip a motor or cause its controller to malfunction. Such a loss can be substantial for semiconductor industries. Voltage sag can also force a computer system or data processing system to crash. An outage is worse than a voltage sag for an industry, but voltage sag occur more often and cause severe problems and economical losses. The voltage sags cause adverse effects on the performance of sensitive loads. Development of compensator to enhance power quality has been an area of active interest for the past few decades. Passive compensators like shunt reactors and capacitors are uncontrolled devices and incapable of continuous variation in parameters. The emergence of custom power devices has led to development of new and fast compensators. The custom power devices include compensators like Distribution Static Compensator (DSTATCOM), Dynamic Voltage Restorer (DVR), Unified Power Quality Conditioner (UPQC), Battery Energy Storage System (BESS), and many more such controllers. These devices may be quite helpful in solving power quality problems. However, due to high cost, and for effective control, they are to be optimally placed in the system. Graphics based models of DSTATCOM, DVR and Solid State Transfer Switch (SSTS) were developed using software packages PSCAD/EMTDC to study power quality enhancement and voltage sag mitigation. Placement of DVR to mitigate voltage sag caused by source side imbalance and harmonics was considered. A phase advance compensation strategy to inject optimum amount of energy from DVR to correct voltage sag has been considered. Design of a 12-pulse DSTATCOM with feed forward compensation scheme was proposed in to mitigate voltage sag and improve power factor. Adaptive perceptron technique to control voltage harmonics, unbalance and voltage sag using DVR has been suggested. Placement of DSTATCOM for mitigation of voltage sag and voltage flicker using Kalman filter and its derivatives has been considered. Phase adjustment in voltage injected by DVR has been...
proposed in to mitigate voltage sag and swell. Combined operation of UPQC and Distributed Generation (DG) has been suggested in to mitigate voltage sag and other power quality disturbances. Placement of DSTATCOM and DVR has been considered in to mitigate voltage sag and swell. A pulse width modulation (PWM) based scheme has been considered in this work to control electronic valves used in DSTATCOM and DVR. A cascade converter based DVR has been considered, for mitigation of voltage sag. Implementation of discrete wavelet transforms using LC filters has been suggested for operation of DVR to mitigate voltage sag. A DVR based on a five-level flying-capacitor operated by a repetitive control scheme has been suggested. Placement of DVR in a small radial distribution system was considered. In phase voltage injection by DVR was considered in this work. A novel sag detection method for the line-interactive DVR has been presented. Placement of UPQC with minimum active power injection has been considered. A novel compensation and control strategy for Series Power Quality Regulator (SPQR) for voltage sag/swell and steady-state voltage variation reduction has been proposed. Two topologies for DVR based on direct converters without direct current (DC) link have been presented. These topologies are effective in control of voltage disturbances such as sag/swell. The works presented have considered placement of custom power devices in small radial distribution systems. Very limited attempt seems to be made in optimal placement of custom power devices in interconnected power systems. Placement of Static VAR Compensator (SVC), Static Compensator (STATCOM) and DVR for voltage sag mitigation in a predominantly meshed sub-transmission network and a predominantly radial distribution network has been considered. However, placement of Flexible AC Transmission System (FACTS) controllers have been considered at an arbitrarily selected bus and no specific criteria has been suggested to determine optimal location of such controllers. Optimal placement of FACTS devices based on Nichiang Genetic Algorithm (NGA) has been suggested to minimize financial losses in the network due to voltage sag. Optimal placement of FACTS controllers using genetic algorithm (GA) based optimization has been suggested to mitigate voltage sag in a meshed distribution system.

The Artificial Neural Network (ANN) based methodologies have been successfully applied in several areas of the Electrical Engineering, including detection of voltage disturbances, voltage and reactive power control, fault detections. In this paper, the ANN based approach has been applied to find the optimal location of DSTATCOM for voltage sag mitigation. The ANN was trained with Levenberg Marquardt back propagation algorithm. Since most of the sags in the power system are caused by short-circuit faults in transmission and distribution network, fault simulations/studies have been historically the most popular tool for voltage sag estimation. Classical symmetrical component analysis, phase variable approaches, and complete time domain simulations are among widely used methods for fault simulation in power system. In the present work, time domain simulations have been done using MATLAB/SIMULINK software and voltage sags have been estimated under different type of faults. Case studies have been performed on IEEE 30-bus system.

II. DSTATCOM CONFIGURATION MODEL

In the present work, the DSTATCOM has been represented as three independently controllable single phase current sources injecting reactive current in the three phases at the point of coupling. The proposed DSTATCOM model has been shown in Fig. 1. The control scheme consists of three control switches which can be set on/off as per compensation requirement. The maximum and minimum reactive power injection limit of DSTATCOM has been taken as +50 MVAR and -50 MVAR, respectively.

![Fig. 1. Proposed DSTATCOM configuration model](image)

III. METHODOLOGY

The simulation model of the power system network under study is developed using MATLAB/SIMULINK. This model is used to find the three phase per unit (p.u.) voltages of all the buses of the network under different type of short-circuits viz. single line to ground (L-G), line to line (L-L), double line to ground (L-L-G) and three phase (L-L-L or L-L-L-G) faults. Post-fault voltages have been used to train a feed forward neural network with back-propagation algorithm. The training process is carried out with large no. of input and output target data. The normal p.u. voltages of the different buses have been considered as output target data. Once the network is trained, some data are used to test the network. The testing result provides information about most insecure bus of the system based on highest deviation from the target. The bus having highest deviation from the target data has been considered as the optimal location for the placement of DSTATCOM to mitigate the voltage sag problem.

Optimal Placement of Dstatcom For Voltage Sag Mitigation Using an Anfis Based Approach for Power Quality Enhancement
IV. SIMULATION CASE STUDIES

The simulation model of IEEE-30 bus system composed of 30 buses and 37 lines was developed using MATLAB /SIMULINK software. The system consists of 6 generator buses including 2 shunts 4 transformers and 24 load buses. The total real and reactive power demand of the system are 283.40 MW and 126.20 MVAR, respectively.

The simulation block diagram of the system has been shown in Fig. 2. This plant model has been used for finding three phase bus voltages under different type of faults, and for the database collection to train the artificial neural network. The voltage database was prepared by creating L-G, L-L, L-L-G and L-LL-G fault at different buses during the period 33.33 milliseconds to 83.33 milliseconds.

The normal p.u. voltages of different buses (taken as 1.0 p.u. in this work) were considered as output target data. Some data were used to test the network and mean square errors (mean of squared deviation of post-fault bus voltages from target value) were calculated at different buses. The ANN training performance has been shown in Table 1. It is observed from Table 1 that bus-10 has the highest value of mean square error. Hence, bus-10 was considered as the optimal location for the placement of DSTATCOM. The DSTATCOM model proposed in section-2 of this paper was considered and its SIMULINK model was developed. Post-fault three phase voltages were plotted using MATLAB/SIMULINK software without DSTATCOM and with DSTATCOM at the optimal location (i.e. bus-10). Plots of voltage vs. time at some of the buses with faults at bus-4 and at bus-13, respectively, have been shown in figures 3, 4, 5 and 6 for L-G, L-L, L-L-G and L-L-L-G fault, respectively. It is observed from figures 3, 4, 5, 6 that placement of DSTATCOM at bus-10 results in significant reduction of voltage sag under all type of short circuits.
Voltage profiles of few buses with LL fault at Bus-13

<table>
<thead>
<tr>
<th>Without DSTATCOM</th>
<th>With DSTATCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage profiles of few buses with LL fault at Bus-4

<table>
<thead>
<tr>
<th>Without DSTATCOM</th>
<th>With DSTATCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage profiles of few buses with LL-G fault at Bus-13

<table>
<thead>
<tr>
<th>Without DSTATCOM</th>
<th>With DSTATCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage profiles of few buses with LL-G fault at Bus-4

<table>
<thead>
<tr>
<th>Without DSTATCOM</th>
<th>With DSTATCOM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this paper, an ANFIS based approach has been presented for optimal placement of DSTATCOM controller to mitigate voltage sag in an interconnected power system. Case studies have been performed on IEEE 30-bus system with the help of MATLAB/SIMULINK software. The time domain simulations of post-fault voltages have been obtained with and without DSTATCOM. The optimal location of DSTATCOM has been obtained using proposed ANFIS based approach. The simulation results show that proposed approach of placement of DSTATCOM is quite effective in voltage sag mitigation under short-circuits. This approach is quite simple and easy to adopt.

REFERENCES

