
International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-2, Feb.-2018
http://iraj.in

Software Testing Techniques: A Comprehensive Analysis

16

SOFTWARE TESTING TECHNIQUES: A COMPREHENSIVE
ANALYSIS

1SHLOAK CHOPRA, 2KSHITIJ MUNDRA, 3SWARNALATHA P.

1,2,3School of Computer Science Engineering, Vellore Institute of Technology, Vellore

Abstract - As our dependence on the software systems is increasing at a breakneck speed- it has become paramount to
develop a threshold amount of reliability and trust between us and the software systems. Software Testing is becoming
paramount to ensure the promised and expected functional and non-functional requirements are fulfilled by every software
system. Software testing has become an inherent part of the Software Development Lifecycle, and has become sacrosanct to
test and maintain the sanctity of software. The testing methodologies and techniques should be enhanced and implemented in
a proper manner, to ensure that quality is embedded in the software from its conception to deployment. This paper aims to
elaborate on existing testing methodologies and discuss upon their application and relations between one another for
incorporating better quality assurance. It also elaborates upon some improvements in certain testing methods and techniques.

Keywords - Black-box testing, Grey-box testing, Testing Methodologies, White Box Testing

I. INTRODUCTION

In recent times, our dependence on software system
has been growing exponentially and with this
growing dependence, the concern for reliability and
security in using these software systems is evolving.
Software Engineering is of great use in the fields of
management systems, system dynamics and computer
science [1]. It has become necessary to embed testing
techniques at each level in the Software Development
Lifecycle i.e. Requirement Specification, Analysis,
Design Development, Code Development,
Deployment of Software and Maintenance phase. The
incorporation of testing methodologies at each phase
guarantees the authenticity and quality at that level.
The flaws at any particular level can cause serious
implications at the cascading levels [2].
The testing process can be divided into various types.
When the classification is done based on the stage it
is opted for, then it can be divided into- Unit Testing,
Integration Testing, Functional Testing, System
Testing and Acceptance Testing. While the first four
are covered by the software developer or by an
engineer who is responsible for quality assurance
known as software tester [3], the client or the target
users of the software generally do the last. The whole
process of testing can also be categorized upon the
knowledge of the system undergoing the test; it can
be broadly divided into Black Box, Grey Box and
White Box Testing. There are various types of testing
strategies that are applied with different aim and
objective to test a software application.
The Testing Cycle can be broadly categorized into
several phases, ranging from the preliminary Test
Planning to the final Test Results. The foremost
phase is Test Planning and is the review and
documentation of all the processes that need to be
carried on during the entire testing process. Test Case
Development is the next phase in the testing cycle, in
which the main aim is the development of test cases,
which would be used for testing the software. The

third phase of testing is Test Execution where the test
cases previously generated are put to use, and the
bugs that are relevant are reported in the following
phase, which is called the Test Reporting Phase. The
final stage of testing cycle is Test Result Analysis
where the developer does the defect analysis for the
software, and this process can be handled along with
the software clients if he has a proper understanding
of the development techniques used for development
and his requirements [4]. The following terms are
usually used in the testing procedures and have been
explained in the simplest of means below:
Verification: It is a concept in which it is guaranteed
that the software system that has been designed is
working in a manner that is acceptable and suitable to
the user base.

Figure 1: Testing Techniques-Classification

International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-2, Feb.-2018
http://iraj.in

Software Testing Techniques: A Comprehensive Analysis

17

Validation: This is a concept in which it is
determined that the software system is developed as it
was expected.

II. EXISTING TESTING TECHNIQUES

There are a plethora of existing techniques applied in
the domain of Software Testing, but they can be
broadly be categorized under the masthead of- White
Box Testing, Black Box Testing and Grey Box
Testing [5]. The first step is to design proper test
cases for each type of testing technique.

White Box Testing Techniques:

The most trivial process of testing the most basic unit
of the software- its functionality and the internal
architecture of the software system. This
methodology of testing requires a certain degree of
programming expertise and experience in this domain
to design specific test cases. White box testing is also
called Security Testing technique and help to certify
whether the information system secure the data and
perform the corresponding functionality [6]. White
box testing techniques are efficient for solving
problems as the errors can be detected before they
cause any serious implications.

A. Control Flow Testing: The structural or
implementation view contains many components,
modules or sub-systems that interact with one
another. The complex interactions can be subdivided
into- interactions that occur along an execution path,
in such paths there is a concurrent flow of errors
which flows down the entire execution path. The
second type are the ones that are specifically related
to some data items in execution, here the ones defined
latter depend on the earlier ones for values and
definitions. Control Flow Graphs (CFGs) are
considered a specific case of Finite-State Machines
(FSMs) which are used to check the entry, exit,
processing and branching nodes for control flow
errors.

B. Data Flow Testing: It is one of the oldest testing
techniques that has been applied in software testing
for more than thirty years now. The data objects are
the most basic unit of any software model, and
sharing data objects is considered the weakest form of
coupling and the strongest form of cohesion in a
software system. The primary objective of this
method is to derive a set of test cases which execute
the paths between the definition and the
corresponding use of those data items. The data flow
can be tested through Data Flow Graphs (DFGs)
which are similar to the CFGs mentioned earlier. The
criterion of Data Flow Testing in general requires that
definition use associations (duas)should be covered.
It aims to achieve that each of the duas should be
clearly defined and executed at least once [7].

C. Loop Testing: The loops are generally avoided
while evaluating and testing CFGs, because the loop
testing methodology is intricately delicate and
drastically different. Each time when the loop is
traversed, it is counted as a distinct path, but when
two or more loops are concatenated, the number of
distinct path multiplies, and as the loop is repeated,
the combinational complexity exponentially increases
[8]. Using the concept of cyclomatic complexity, an
often-used software metric we can gauge the logical
complexity of a module or modules.

D. Conditional Testing: This type of testing aims at
testing all the possible outputs pertaining to any
relational or Boolean operator used in any of the
modules of the software system. This can be applied
in the code development phase of the SDLC, in order
to promote quality and reduce the testing time [9].
E. Branch/Decision Testing: Branch testing is closely
related to decision testing methodology, and for test
items with only one entry point the branch test
coverage is equivalent to the decision test coverage. It
aims at testing the data flow between modules and
produces better results for finite state machines. This
applied technique finds a set of paths minimally
which contain all primary and internal gate-level
input and output lines. It presents a more viable
design and test approach. A criteria is used for branch
selection, which is called the fitness-function. The
two major heuristics used for this fitness function are
the approach level and branch level distance. The
approach level distance is a more important heuristic
in this regard, and helps in increasing the efficiency
of branch testing [for details see 10].

F. Basis Path Testing: Every program contains a
number of execution paths. This technique aims to
analyse only one of those which is the basis or at-
least covers most of the intrinsic concepts of
execution throughout a program. A basis set is a finite
set of linearly independent execution paths, each of
which have to be tested at least once. Each
independent path has at least one node different from
each of all other paths [11]. When tested based on
only the logical structure of the program, many
infeasible paths are also tested decreasing the
efficiency of the testing technique, but when this
technique is applied with the control flow graph
generated from the code of the software module being
tested the efficiency can be improved. On the basis of
dependence relationships of the predicates involved a
baseline path can be selected instead of the longest
path which has many branch nodes, thus increasing
the overall efficiency [12].

Black Box Testing Techniques:

The testing approach applied in this type of testing
does not include the implementation level detail, as it
focuses on the various functionalities that were

International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-2, Feb.-2018
http://iraj.in

Software Testing Techniques: A Comprehensive Analysis

18

expected from the software by the clients, this is
collaborated with the help of the requirement
specification document. This requires that all the
functional requirements should be so stated that they
could be tested effectively during the black box
testing process.

A. Equivalence Class Partitioning (ECP): The
entire input and output domain of the program is
divided into classes, and from these classes test cases
are derived. Each class in itself represents a set of test
cases, which are homogenous amongst themselves,
and heterogeneous to those of other classes.

This employs a strategy of ‘Divide and Rule’ as after
division of the entire input domain into equivalence
classes. In ECP, it is assumed that if one of the test
cases applied works for a partitioned set, then all test
cases would satisfy the conditions in relation to that
partition set, and if one condition in the partition set
fails to work, then we assume that none of the
conditions in the partition set would work effectively.
The development of equivalence classes requires
experience and expertise in the domain of black box
testing, as without the proper categorization of
equivalence classes, it would be highly unlikely that
this methodology of testing would be successful [13].

B. Boundary Value Analysis (BVA): This technique
was developed after observing the general trend of an
increased amount of errors around the boundary
values of various conditional statements within the
code. It is based on testing the edge cases-or the
boundaries-of the input and output domain. The
boundaries can be both valid (within the valid class)
and invalid (in the invalid class). It chooses from
among the entire domain a set of test cases on the
outer-most edges or boundaries of the domain. The
following guidelines need to be kept in mind while
performing BVA [14]:

(i) The test cases need to be designed in such a
manner for any range of values say a and b, such that
a and b are considered as the edge cases and would
come under boundary value analysis.

 (ii) The test cases designed for a set of values should
always include the highest and the lowest of the
values and the ones above and below them also need
to be tested.

BVA is able to identify those bugs, which cannot be
directly identified in ECP methodology. In general,
both the methodologies are complementary and
should go hand in hand during the black-box testing
process. There is also another similarity between the
two testing techniques that both work at the unit
testing level. These are the general parameters to be
taken care of while applying these methods.

The bug identification rate of the BVA algorithm is
higher as compared to that of ECP as it works on the
edge cases where there are higher chances of faults.
Applying both the techniques complementarily is
highly recommended [15].

C. Classification Tree Method: The classification
tree methodology focuses on the systematic design
and specification of test cases based upon the
software system. The application of this testing
technique involves two steps- the classification and
specification of the input parameters which have to be
tested known as the classifications and their
parametric values which are in turn known as classes
[16]. Classes that result from decomposing the
classifications may be partitioned further into sub-
classes based upon the quality required during the
testing. Each classification acts as a test condition.
The process of partitioning applied in this technique
is similar to the ECP testing technique, but the stark
difference is that the partitions in this methodology
should be completely disjoint while in the ECP they
could be overlapping based on the problem at hand.
Also, the classification tree represents the software
system at hand visually.

D. State Transition Testing: This testing
methodology derives a model in which the system
can be detailed with the help of a specific number of
states, transitions between these states and the events
driving these transitions. These states should be
identifiable, discrete and finite in number. Each event
driving the transition should be clearly defined. This
model can be represented as a state table or a state
transition diagram. The test cases may be either the
states or the transitions between them depending on
the coverage requirement of testing. As the number of
states increase the cyclomatic complexity of the
entire model increases, and hence a hierarchical state
transition matrix methodology is applied in order to
tackle with this complexity [17].

E. Cause Effect Graph Testing: The primary
objective of this testing methodology is to derive test-
cases that cover the logical relationships between the
causes (inputs) and the effects (outputs) of a module
or class of the software system. The notation used in

International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-2, Feb.-2018
http://iraj.in

Software Testing Techniques: A Comprehensive Analysis

19

this test methodology is a cause-effect graph. It maps
a set of causes to a set of effects assuring to cover all
the criterion with about hundred percent efficiency.
The cause effect graphs can be effectively derived
from the UML diagrams. First the UML diagrams are
converted to the decision table, and then it is
converted to the cause-effect graph [18].

F. Syntax Testing: It uses a formal model of the
inputs to test an item based on the test design. The
model is represented as a set of rules, where each of
them elaborates upon an input parameter in terms of
sequences, iterations or selections. The syntax can be
represented in textual or diagrammatic format. The
test conditions can be based on either the complete or
partial model of inputs. This form of testing gains
information from the Software Requirement
Specification analysis and source code analysis, and
these requirement information are transformed with
the help of grammatical parsing to a semantic and
syntax based set of rules. It can also help in the
automation of the testing approach. The requirement
model adds a semantic framework leading to more
effective results and better test scripts [19].

G. Adaptive Random Testing: In general testing is
considered a time consuming and expensive process,
random testing is one of the usual approaches that are
used for automatic selection of test cases that need to
be tested. The background behind choosing such a
technique is to select test cases until a stopping
criterion is reached for example detecting a failure,
execution of predefined number of test cases or the
end of time limitation is met. As the random testing
methodology does not benefit from the available
information under test, adaptive random testing was
introduced. In this method, the random test cases
distribution is made with the help of the knowledge
of the executed test cases, such that the entire
distribution covers the domain of variables and
modules to be tested effectively. Distance based or
restrictive random testing methodologies are used for
adaptive random testing to reduce the overhead in
choosing the test cases and to provide an effective
coverage over the test domain [20].

Grey Box Testing Techniques:
Grey Box Testing incorporates features from both the
black box and white box testing, here the software
tester has a basic idea of the structure of the software
system and then tests it with respect to the
functionalities required. It fuses the concept of
structural testing and functional testing [21]. The
number of test cases applied are smaller than white
box testing approach but larger than black box testing
approach.

A. Orthogonal Array Testing: This is a very
prominent testing methodology incorporated when
the number of possible test cases ranges between a

relatively small and an immensely large number.
Taguchi further enhanced this method, and his new
method is known as Taguchi’s Orthogonal Array
Testing (TOAT) method. It helps obtain robust
solutions and ensure that the incorporated testing
scenarios land up to provide a good amount of
statistical information with a minimum uncertainty in
the operating environment [22]. The orthogonal array
testing can be applied at the user interface, system,
regression levels and helps identify the faulty logic in
the modules or program.

B. Regression Testing: It is the testing methodology
that is highly used in dynamic frameworks or where
there are incremental rollouts of the software system.
It is called regressive because it retests certain
functionalities of the existing software whenever
additional functionalities have to be integrated into
the previous build of the software. It also reuses
certain components previously build to increase the
efficiency of the entire testing process [23]. This
testing method is so developed that the testing
framework is designed to integrate into the software
development process. This testing technique
generates and analyses the performance of the
individual components that are added with the new
software rollouts or updates, and also tests them with
the entire software of the previous build. This testing
method is usually used with the Extreme
Programming or Incremental SDLC Software
Development Models.

C. Pattern Testing: The automatic generation of test
patterns with the help of software is an upcoming
methodology of testing which is used in domains
having projects with similar features. The random test
pattern generation does not benefit from the domain
knowledge of the internal structure of the program.
ATPG methodology aims at reducing the effort of the
test engineer without compromising on the test
requirements. If the code of the system generated is
available at the time of applying this testing
methodology, then it can be performed under the
hood of white-box testing procedures and if the code
is not available by the time of testing it comes under
the hood of black-box or rather grey box testing
technique. The methodology applied is a mixture of
structural techniques in which test suites are
generated to cover the structural front, and the
functional techniques where random testing
techniques are a part of model inference for black-
box components [24].

III. APPLICATION OF TESTING
METHODOLOGIES

The software testing mechanism is sacrosanct to
maintain and test the quality of the software, and
hence is applied at different levels in different
software applications, expanded below in Figure 3 is

International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-2, Feb.-2018
http://iraj.in

Software Testing Techniques: A Comprehensive Analysis

20

phases at which the quality assurance measures are
generally applicable, as observed in the research by
Mohammad Kassab [25]. His observations are based
on the surveys that have been elaborated in his
research. He surveyed 199 participants out of which
167 responded to the survey, and he was able to
categorize the following information.

Figure 3-Application of Testing at different levels [25]

CONCLUSION

By and large, testing is one domain that requires
expertise and is immensely critical in all the stages of
the software development process. The choice of
testing methodologies and the level at which they are
adapted in the programming is highly important to
ensure the timely delivery of software systems. The
techniques listed in the paper above are the majority
of techniques used across domains of software
development. As we note that the extent to which
black-box, white-box and grey-box testing techniques
are applied depend upon on the software application,
but each one of them is applied for a distinct function,
and has an important role in testing certain
fundamentals of the system.

REFERENCES

[1] Abran, J.W. Moore, P. Bourque, R. Dupuis, and L.L. Tripp,

“Guild to the Software Engineering Body Knowledge,”
IEEE, 2004.

[2] Manish Jain, “Aspect Oriented Programming and Types of
Software Testing”, Second International Conference on
Computer Intelligence & Communication Technology, 2016
pp. 64-69.

[3] Agarwal et al., “Software engineering and testing”. Jones &
Bartlett Learning, 2010.

[4] Everett et al., “Software testing: testing across the entire
software development life cycle”. John Wiley & Sons, 2007.

[5] J.Irena. “Software Testing Methods and Techniques”, 2008,
pp. 30-35.

[6] Muhammad Abid Jamil, Muhammad Arif, Normi Sham
Awang Abubakar, Akhlaq Ahmad, “Software Testing
Techniques: A Literature Review”, 6th International

Conference on Communication Technology for The Muslim
World, 2016 pp. 177-182.

[7] Roberto Paulo Andrioli de Araujo, Marcos Lordello Chaim,
“Data Flow Testing in the Large”, IEEE International
Conference on Software Testing, Verification and Validation,
2014 pp. 81-90.

[8] Jeff Tian, “Control Flow, Data Dependency and Interaction
Testing- Software Quality Engineering: Testing, Quality
Assurance, and Quantifiable Improvement” pp. 175-202.

[9] Roger S. Pressman, “Software Engineering-A Practitioner’s
Approach” pp. 493-494.

[10] Andrea Arcuri, “It Does Matter How You Normalise the
Branch Distance in Search Based Software Testing”, Third
International Conference on Software Testing, Verification
and Validation, 2010 pp. 205-214.

[11] T.K. Wijaysiriwardhane, P.G. Wijayarathna, D.D
Karunarathna, “An Automated Tool to Generate Test Cases
for Performing Basis Path Testing”, The International
Conference on Advances in ICT for Emerging Regions,
September, 2011.

[12] Zhang Zhonglin, Mei Lingxia, “An Improved Method of
Acquiring Basis Path for Software Testing, The 5th
International Conference on Computer Science & Education,
2010.

[13] Ian Sommeriele, “Software Engineering”, Addison Wesley.
[14] T.H. Shivkumar, “Software Testing Techniques”, Volume 2,

Issue 10, ISSN: 2277 128X.
[15] Pramod Mathew Jacob, Dr. M. Prasanna, “A Comparative

Analysis on Black Box Testing Strategies”, International
Conference on Information Science (ICIS), 2016.

[16] Peter M. Kruse, Joachim Wegener, “Test Sequence
Generation from Classification Trees”, Fifth International
Conference on Software Testing, Verification and Validation,
2012 pp. 540-548.

[17] Kai Cui, Kuanju Zhou, Houbing Song, Mingchu Li,
“Automated Software Testing Based on Heirarchical State
Transition Matrix for Smart Home”, IEEE Transactions,
2017. (Accepted Paper).

[18] Hyun Seung Son; R. Young Chul Kim; Young B. Park, “Test
Case Generation from Cause-Effect Graph Based on Model
Transformation”, International Conference on Information
Science & Applications (ICISA), 2014.

[19] Nadia Nahar, Kazi Sakab, “SSTF: A Novel Automated Test
Generation Framework using Software Semantics and
Syntax”, 17th International Conference on Computer and
Information Technology (ICCIT), 2014 pp. 69-74.

[20] Korosh Koocheckian Sabor, Stuart Thiel, “Adaptive Random
Testing by Static Partitioning”, IEEE/ACM 10th International
Workshop on Automation of Software Test, 2015 pp. 28-32.

[21] Jai Kaur, Akshita Goyal, Tanupriya Choudhury, Sai Sabitha,
“A Walk Through of Software Testing Techniques”, 5th
International Conference on System Modelling &
Advancement in Research Trends, 2016 pp. 103-108.

[22] Han Yi, C.Y. Chung, K.P. Wong, “Robust Transmission
Network Expansion Planning Method with Taguchi’s
Orthogonal Array Testing”, IEEE Transactions on Power
System, Vol. 26, No. 3, August, 2011 pp. 1573-1580.

[23] Johannes Wienke, Sebastian Wrede, “Continuous Regression
Testing for Component Resource Utilization”, IEEE
International Conference on Simulation, Modelling, and
Programming for Autonomous Robots, 2016 pp. 273-280.

[24] Ali Khalili, Massimo Narizzano, Armando Tacchella, Enrico
Giunchiglia, “Automatic test-pattern generation for grey-box
programs”, IEEE/ACM 10th International Workshop on
Automation of Software Test, 2015 pp. 33-37.

[25] Mohamad Kassab, Joanna DeFranco, Phillip Laplante,
“Software Testing Practices in Industry: The State of the
Practice”, IEEE Software, Vol. PP, Issue 99, 2016 (Accepted
Paper).



