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Abstract— Plates supported on elastic foundations are encountered in many Engineering applications. Conventionally such 
systems can be analysed using regular plate bending element plus discrete soil springs. The present work aims at an element 
formulation suitable for analysis of such systems without the use of explicit discrete soil springs. The scope of the work 
includes static analysis of an isotropic rectangular plate resting on elastic foundation with various boundary conditions, 
various types of load applications for varying properties of foundation. In this paper, finite element analysis has been carried 
out for an isotropic rectangular plate by using a four noded Kirchhoff rectangular element with four degrees of freedom per 
node, with Winkler model for Elastic foundation. The finite element formulation has been carried out by integrating the 
properties of the plate with those of elastic foundation using Galerkin’s approach instead of the commonly used potential 
energy approach. Numerical analysis has been carried out by suitable MATLAB code and the results obtained are in good 
agreement with those reported in earlier studies. 
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I. INTRODUCTION 
 
Plates on elastic foundation have wide application in 
engineering such as foundations, storage tanks, 
swimming pools, floor systems of buildings and 
highways and airfield pavements etc. The complexity 
of the analytical formulations of plates on elastic 
foundation limited the number of available analytical 
solutions. So the need for robust and versatile 
numerical solutions has become critical. Several 
numerical methods have been used by researchers to 
solve the plate-bending problem. These numerical 
methods include finite difference method, Ritz 
method, finite strip method, boundary element method 
and the finite element method. Among the numerical 
methods mentioned above the finite element method is 
the most versatile one. The field of plate bending has 
been an area of intensive research since the 
introduction of the finite element method in the early 
1960s and still remains to be one of the active research 
fields. This is, mainly, due to the wide application of 
plate elements in engineering as indicated above and 
also due to the complexity of modelling plate 
elements. The complexity of modelling plate elements 
generally stem from the difficulties of obtaining 
suitable shape functions that preserve strain or slope 
continuity and satisfying the compatibility conditions 
in the case of thin plates. Also, failure of formulations 
based on thick plate theory to give good results when 
plate thickness becomes small is another daunting 
problem that haunted the development of successful 
thick plate bending elements. In spite of that, there is a 
large number of plate elements developed which fall 
into the various categories of non-conforming (non 
compatible), conforming (compatible), etc. Many of  

 
these elements were successfully used in practice.  
 
The mechanical modelling of plate-subsoil interaction 
problem is mathematically quite complex 
phenomenon and the response of subgrade is governed 
by many factors. A simple and widely used one is 
Winkler model where it is assumed that the 
foundation soil consists of linear elastic springs and 
each spring is independent of the others. Generally, 
analysis of the bending of plates on an elastic 
foundation is developed on the assumption that the 
reaction forces of the foundation are proportional at 
every point to the deflection of the plane at that point. 
This assumption was first introduced by Winkler for 
the analysis of railroad tracks. The difficulty with the 
Winkler model applied for analysis of plates on elastic 
foundations is the necessity of the evaluation of the 
modulus of the subgrade reaction ks, which does not 
have a unique value for a particular soil or a particular 
loading on the plate. However, the Winkler model has 
been used for everyday design by practicing engineers 
because of its simplicity. 
 
II. MODELLING THE BEHAVIOR OF 

PLATES 
 

A. General 
Plates are structures with very small thickness 
compared to its planar dimensions. Slabs in civil 
engineering structures, bearing plates under columns, 
parts of mechanical components, etc. are common 
examples of plates. The bending properties of a plate 
depend greatly on its thickness. Hence, in classical 
theory we have the following groups, viz: (i) thin 
plates with small deflections, (ii) thin plates with large 
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deflections and (iii) thick plates [1]-[3]. There are 
mainly three theories of plate analysis. Namely: 
Kirchhoff or Classical Plate Theory (thin plates), 
Mindlin or  thick Plate theory also known as First 
Order Shear deformation Theory (thick plates) and 
Third Order Shear Deformation Theory 
(laminates).The most widely used plate theory is 
classical Kirchhoff thin plate theory which ignores the 
effect of the shear deformation through plate thickness. 
The basic assumptions being considered under 
classical Kirchhoff’s plate bending theory are 
identical to the Euler-Bernoulli beam theory 
assumptions. The following assumptions are 
considered with the Kirchhoff theory: 
 
a) There is no deformation in the middle plane of the 
plate. This plane remains neutral during bending. 
 
b) Points of the plate lying initially on a normal to the 
middle surface of the plate remain on the normal to the 
same surface even after bending. 
 
c) The normal stresses in the direction transverse to 
the plate are negligible. However, the effect of the 
shear deformation becomes important as the thickness 
of plate increases. For this reason, it is obvious that 
shear deformations have to be taken into account 
especially for thick plates [4]. Mindlin plate element 
that includes the effect of shear deformation is 
fundamentally simple to adopt for analysis of plates on 
elastic foundation [5]- [8]. However, Mindlin plate 
elements cause shear locking when the plate becomes 
thin. 
 
B. Kirchhoff plate element with sixteen degrees of 
freedom Kirchhoff or Classical Plate Theory is used to 
model the plate. In these elements C2-continuity is 
considered, i.e. at each of the four nodes, four degrees 
of freedom, namely w, ∂w/∂x,∂w/∂y and ∂2w/∂x∂y are 
treated as basic unknowns. Hence it leads to 16 
degrees of freedom per element. This type of element 
is shown in Fig. 1. The typical element has size 2a × 
2b. If Ni is the shape function at node i and i= 1 to 4. wi 
and i are the displacement and rotations The 
displacement field for any point can be expressed as  
 

w = ΣNi1wi+ ΣNi2xi+ ΣNi3yi + ΣNi4xyi   (1)  
The shape functions in terms of natural coordinates  
and are given by [9] 
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Figure1.  Four –noded rectangular finite element used in this 

study 
 

N24(,) = 2
1()1

1 () 
N31(,) = 2

0()2
0 () 

N32(,) = 2
1()2

0 () 
N33(,) = 2

0()2
1 () 

N34(,) = 2
1()2

1 () 
N41(,) = 1

0()2
0 () 

N42(,) = 1
1()2

0 () 
N43(,) = 1

0()2
1 () 

N44(,) = 1
1()2

1 () 
For any (,) [-1,+1], where 1

0,1
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1 are the 

cubic Hermite polynomials defined on [-1,+1] 
1
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III. MODELLING THE BEHAVIOR OF 

WINKLER FOUNDATION 
 
The effect of a foundation can be modeled by various 
approaches on the plate. The best realistic model is to 
represent the foundation as a continuum model where 
the elasticity solution represents the behavior of the 
foundation. On the other hand, the elastic foundation 
can be modeled as a set of springs. The simplest model 
presented for the elastic foundation is the Winkler 
model. Winkler model assumes that shear resistance 
of the foundation is ignorable compared to the shear 
capacity of foundation and models the foundation as a 
set of independent springs. Therefore, there is no 
lateral interaction between the springs.   The hurdle 
with the Winkler model applied for analysis of plates 
on elastic foundations is the necessity of the evaluation 
of the modulus of the subgrade reaction, ks, which 
does not have a unique value for a particular soil or a 
particular loading on the plate. The main 
disadvantages of this model are the discontinuity in 
the soil displacement between the soil under the 
structure and that outside the structure. Winkler 
model gives a constant displacement of the plate for a 
uniformly distributed load which results in a zero 
bending moment and shear force in the plate, thus 
creating non-conservative design criteria. However, 
the Winkler model has been used for everyday design 
by practicing engineers because of its simplicity. 
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IV. FORMULATION OF THE INTEGRATED 
FINITE ELEMENT BY GALERKIN’S 
METHOD 

 
The finite element formulation is done by integrating 
the properties of the plate with those of elastic 
foundation using Galerkin’s approach instead of the 
commonly used potential energy approach. The 
Galerkin method is extended to solving the plate 
equation of plate on elastic foundation. From Plate 
theory, if w is the displacement and ks is the modulus 
of subgrade reaction of soil, the equilibrium under an 
applied vertical loading of intensity q demands:,  
 D∇ 4w+ksw = q                     (2)                                                                               

       (3) 
The approximate solution w ̃ is of the form 
w ̃ =[N]{Δ}                                    (4) 
 Substituting this in Galerkin Criterion on weighted 
residual 
yields: 

:  
      (5) 

 
V. NUMERICAL ANALYSIS AND RESULTS 
 
Numerical modelling of the plates on Winkler 
foundation has been carried out with the above 
integrated finite element in a MATLAB environment, 
and results obtained are compared with those available 
in literature for verification. When the value of 
non-dimensional soil stiffness K is zero then the 
structure is equivalent to an ordinary plate, for which 
the exact solution is available. Comparing, the model 
is found to be in good agreement with these exact 
values, which validates the numerical MATLAB 
coding. Plates on Winkler foundation for different 
support conditions, different loading conditions are 
modeled for different values of non-dimensional soil 
stiffness K. The results obtained for these are 
comparable with previous studies [10]-[13]. and a 
comparison is made here with Mishra and 
Chakrabarty [14], O¨zgan and Dalo˘glu [15], Y.I. 
O¨zdemir[16]-[17]. as given in Figs. 2 to 5 and Tables 
1 to 4. The central deflection of the structure is used 
for comparison in all cases. The element used in 
present study compares well with PBQ8, MT8 
andnMT17 which are higher order  elements. 
 
Table1.Non-dimensional central displacements for the clamped 
plates with uniformly distributed load 

PBQ4 PBQ8 MT8 MT17
0 0.136 0.1228 0.1369 0.1369 0.1372 0.1334
3 0.127 0.1154 0.1277 0.1277 0.128 0.1247
6 0.062 0.0596 0.0622 0.0622 0.0622 0.0621
9 0.017 0.0173 0.0172 0.0172 0.0172 0.0175

K Present 
study

Mishra and 
Chakrabarti 

O¨zgan and Dalo˘glu  Y.I. O¨zdemir 

 

 
Figure 2. Non-dimensional central displacement of clamped 
plates with different K , subjected to uniformly distributed load 
 
Table2.Non-dimensional central displacements for the clamped 
plates with concentrated load 
 

PBQ4 PBQ8 MT8 MT17
0 0.654 0.5914 0.6507 0.6509 0.6419 0.62
3 0.623 0.5656 0.6186 0.6188 0.6097 0.5876
6 0.392 0.3667 0.3854 0.3855 0.3761 0.3489
9 0.214 0.2006 0.2062 0.2063 0.197 0.1631

K Present studyMishra and 
Chakrabarti

O¨zgan and Dalo˘glu  Y.I. O¨zdemir 

 

 
Figure 3. Non-dimensional central displacement of clamped 
plates with different K values subjected to concentrated load 
 
Table 3. Non-dimensional central displacements for the simply 
supported plates with uniformly distributed load 

PBQ4 PBQ8 MT8 MT17
0 4.13 3.8487 4.1539 4.3629 4.3746 4.1881
3 3.39 3.2025 3.4066 3.5454 3.5553 3.4321
6 0.87 0.8695 0.8741 0.882 0.8821 0.8801
9 0.18 0.1791 0.1758 0.1758 0.1758 0.1771

K Present studyMishra and 
Chakrabarti 

O¨zgan and Dalo˘glu  Y.I. O¨zdemir 

 

 
Figure 4. Non-dimensional central displacement of simply 

supported plates with different K values subjected to uniformly 
distributed load 
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Table 4.Non-dimensional central displacements for the simply  
supported plates with concentrated load 
 

PBQ4 PBQ8 MT8 MT17
0 1.25 1.1578 1.246 1.2911 1.2844 1.2569
3 1.065 0.9968 1.0605 1.0896 1.082 1.06
6 0.427 0.4062 0.4197 0.421 0.4119 0.3845
9 0.214 0.2008 0.2063 0.2064 0.1973 0.1632

K Present studyMishra and 
Chakrabarti 

O¨zgan and Dalo˘glu  Y.I. O¨zdemir 

 

 
Figure 5. Non-dimensional central displacement of simply 

supported plates with different K values subjected to 
concentrated load 

 
CONCLUSION 
 
In this study, a four noded rectangular Kirchhoff’s 
plate element with Winkler foundation integrated and 
having three degrees of freedom per node is developed 
for the analysis of plates resting on elastic foundation. 
The element is tested for different boundary 
conditions and different types of loads for different 
cases of elastic foundations and it gives satisfactory 
results comparing with exact classical solutions and 
results available from literature. It is seen that the 
above element can be used for the analysis of thin and 
moderately thick plates on Winkler foundation. The 
element is free from the problem of shear locking and 
having C2 continuity. It gives more realistic deformed 
shape. Instead of using higher order finite elements 
which are more complex and requires more 
computational effort, this element is a better 
alternative as it is simple and requires less 
computational effort. 
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