
International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

25

LOAD BALANCING FOR DISTRIBUTED FILE SYSTEMS

K. SHANMUGA SUNDARAM

Dr. M.G.R Educational and Research Institute
kshansunder@gmail.com

Abstract— In Distibuted file systems, nodes simultaneously serve computing and storage functions; a file is partitioned

into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes.
However, in a distributed computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the
system. Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file
system; that is, the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems
in production systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a
large-scale, failure-prone environment because the central load balancer is put under considerable workload that is linearly
scaled with the system size, and may thus become the performance bottleneck and the single point of failure. In this paper, a
fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared
against a centralized approach in a production system and a competing distributed solution presented in the literature. The
simulation results indicate that our proposal is comparable with the existing centralized approach and considerably
outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The
performance of our proposal implemented in the Hadoop distributed file system is further investigated in a cluster
environment.

Keywords- Distributed file systems, Load balancing,Cloud environment.

I. INTRODUCTION

In distributed file system environment, clients can
dynamically allocate their resources on-demand
without sophisticated deployment and management of
resources. Key enabling technologies for clouds
include the Map Reduce programming paradigm [1],
distributed file systems (e.g., [3], [4]), virtualization
(e.g., [4], [5]), and so forth. These techniques
emphasize scalability, so clouds (e.g., [6]) can be large
in scale, and comprising entities can arbitrarily fail
and join while maintaining system reliability.
 Distributed file systems are key building blocks for
cloud computing applications based on the Map
Reduce programming paradigm. In such file systems,
nodes simultaneously serve computing and storage
functions; a file is partitioned into a number of chunks
allocated in distinct nodes so that Map Reduce tasks
can be performed in parallel over the nodes. For
example, consider a word count application that
counts the number of distinct words and the frequency
of each unique word in a large file. In such an
application, a cloud partitions the file into a large
number of disjointed and fixed-size pieces (or file
chunks) and assigns them to different cloud storage
nodes (i.e., chunk servers). Each storage node (or node
for short) then calculates the frequency of each unique
word by scanning and parsing its local file chunks.
 In such a distributed file system, the load of a node is
typically proportional to the number of file chunks the
node possesses [4]. Because the files in a cloud can be
arbitrarily created, deleted, and appended, and nodes
can be upgraded, replaced and added in the file system

[7], the file chunks are not distributed as uniformly as
possible among the nodes. Load balance among
storage nodes is a critical function in clouds. In a
load-balanced cloud, the resources can be well utilized
and provisioned, maximizing the performance of
MapReduce-based applications.
 State-of-the-art distributed file systems (e.g., Google
GFS [3] and Hadoop HDFS [4]) in clouds rely on
central nodes to manage the metadata information of
the file systems and to balance the loads of storage
nodes based on that metadata. The centralized
approach simplifies the design and implementation of
a distributed file system. However, recent experience
(e.g., [8]) concludes that when the number of storage
nodes, the number of files and the number of accesses
to files increase linearly, the central nodes (e.g., the
master in Google GFS) become a performance
bottleneck, as they are unable to accommodate a large
number of file accesses due to clients and MapReduce
applications. Thus, depending on the central nodes to
tackle the load imbalance problem exacerbate their
heavy loads. Even with the latest development in
distributed file systems, the central nodes may still be
overloaded. For example, HDFS federation [15]
suggests an architecture with multiple name nodes
(i.e., the nodes managing the metadata information).
Its file system namespace is statically and manually
partitioned to a number of name nodes. However, as
the workload experienced by the name nodes may
change over time and no adaptive workload
consolidation and/or migration scheme is offered to
balance the loads among the name nodes, any of the
name nodes may become the performance bottleneck.

International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

26

 In this paper, we are interested in studying the load
re-balancing problem in distributed file systems
specialized for large-scale, dynamic and
data-intensive clouds. (The terms “rebalance” and
“balance” are interchangeable in this paper.)
dynamism, simplifying the system provision.

In summary, our contributions are threefold as

follows:
 By leveraging DHTs, we present a load

rebalancing algorithm for distributing file chunks
as uniformly as possible and minimizing the
movement cost as much as possible. Particularly,
our proposed algorithm operates in a distributed
manner in which nodes perform their load
balancing tasks independently without
synchronization or global knowledge regarding
the system.

 Load balancing algorithms based on
DHTs have beenextensively studied (e.g.,
[27]–[30], [33]–[38]). However, most existing
solutions are designed without considering
both movement cost and node heterogeneity
and may introduce significant maintenance
network traffic to the DHTs. In contrast, our
proposal not only takes advantage of physical
network locality in the reallocation of file
chunks to reduce the movement cost but also
exploits capable nodes to improve the overall
system performance.

Additionally, our algorithm reduces algorithmic

overhead introduced to the DHTs as much as possible.

II. LOAD BALANCING PROBLEM

We consider a large-scale distributed file system
consisting of a set of chunk servers V in a cloud, where
the cardinality of V is |V | = n. Typically, n can be one
thousand, ten thousand, or more. In the system, a
number of files are stored in the n chunk servers. First,
let’s denote the set of files as F .Each file f ∈ F is
partitioned into a number of disjointed, fixed-size
chunks denoted by Cf . For example, each chunk has
the same size, 64 Mbytes, in Hadoop HDFS [4].
Second, the load of a chunk server is proportional to
the number of chunks hosted by the server [4]. Third,
node failure is the norm in such a distributed system,
and the chunk servers may be upgraded, replaced and
added in the system. Finally, the files in F may be
arbitrarily created, deleted, and appended. The net
effect results in file chunks not being uniformly
distributed to the chunk servers. Fig. 1 illustrates an
example of the load rebalancing problem with the
assumption that the chunk servers are homogeneous
and have the same capacity.
 Our objective in the current study is to design a load
rebalancing algorithm to reallocate file chunks such

that the chunks can be distributed to the system as
uniformly as possible while reducing the movement
cost as much as possible. Here, the movement cost is
defined as the number of chunks migrated to balance
the loads of the chunkservers.

n

N
V Ff

|| 

Let A be the ideal number of chunks that any
chunkserver i ∈ V is required to manage in a
system-wide load-balanced state, that is,

n

C
A Ff

|| 

Then, our load rebalancing algorithm aims to
minimize the load imbalance factor in each chunk
server I as follows,

ii AL 

where iL denotes the load of node i (i.e., the number
of file chunks hosted by i) and ||·|| represents the
absolute value function. Note that “chunkservers” and
“nodes” are interchangeable
in this paper.

III. PROPOSAL

A. Architecture

The chunkservers in our proposal are organized as a
DHT network; that is, each chunkserver implements a
DHT protocol such as Chord [18] or Pastry [19]. A file
in the system is partitioned into a number of fixed-size
chunks, and “each” chunk has a unique chunk handle
(or chunk identifier) named with a globally known
hash function such as SHA1 [24]. The hash function
returns a unique identifier for a given file’s path-name
string and a chunk index. For example, the identifiers
of the first and third chunks of file
“/user/tom/tmp/a.log” are respectively
SHA1(/user/tom/tmp/a.log, 0) and
SHA1(/user/tom/tmp/a.log, 2). Each chunkserver also
has a unique ID. We represent the IDs of the
chunkservers 1 2 3 in V by 1/n,2/n,….n/n; for short,
denote the n chunkservers n as 1, 2, 3, · · · , n. Unless
otherwise clearly indicated, we denote the successor of
chunkserver i as chunkserver i + 1 and the successor of
chunkserver n as chunkserver 1. In a typical DHT, a
chunkserver i hosts the file chunks whose handles are
within i(i−1 , n], except for chunkserver n, which
manages the chunks n1 whose handles are in (n , n].n
To discover a file chunk, the DHT lookup operation is
performed. In most DHTs, the average number of
nodes visited for a lookup is O(log n) [18], [19] if each
chunkserver I maintains log2 n neighbors, that is,

International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

27

nodes i + 2k mod n for k = 0, 1, 2, · · · , log2 n − 1.
Among the log2 n neighbors, the one i + 20 is the
successor of i. To look up a file with l chunks,l lookups
are issued.
 DHTs are used in our proposal for the following
reasons:
 • The chunkservers self-configure and self-heal in
our pro-
 posal because of their arrivals, departures, and
failures,
 simplifying the system provisioning and
management.
Specifically, typical DHTs guarantee that if a node
leaves, then its locally hosted chunks are reliably
migrated to its successor; the joining node from its
successor to manage. Our proposal heavily depends on
the node arrival and departure operations to migrate
file chunks among nodes Interested readers are
referred to [18], [1] for the details of the
self-management technique in DHTs.
 • While lookups take a modest delay by visiting
O(log n)
 nodes in a typical DHT, the lookup latency can be
reduced because discovering the l chunks of a file can
be performed in parallel. On the other hand, our
proposal is independent of the DHT protocols. To
further reduce the lookup latency
 we can adopt state-of-the-art DHTs such as
Amazon’s Dynamo in [22] that offer one-hop lookup
delay.
 • The DHT network is transparent to the metadata
management in our proposal. While the DHT network
specifies the locations of chunks, our proposal can be
integrated with existing large-scale distributed file
systems, e.g., Google GFS [3] and Hadoop HDFS [4],
in which a centralized master node manages the
namespace of the file system and the mapping of file
chunks to storage nodes. Specifically, to incorporate
our proposal with the master node in GFS, each
chunkserver periodically piggybacks its locally hosted
chunks’ information to the master in a heartbeat
message [3] so that the master can gather the locations
of chunks in the system.
 • In DHTs, if nodes and file chunks are designated
with uniform IDs, the maximum load of a node is
guaranteed to be O(log n) times the average in a
probability of 1 −
 1O(n) [25], [33], [35], thus balancing the loads
of nodes to a certain extent. However, our proposal
presented in Section III-B performs well for both
uniform and non- uniform distributions of IDs of
nodes and file chunks due to arbitrary file
creation/deletion and node arrival/departure.
 As discussed, the load rebalancing problem defined
in Section II is N P-hard, which is technically
challenging and thus demands an in-depth study.
Orthogonal issues such as metadata management, file
consistency models and replication strategies are out

of the scope of our study, and independent studies are
required.

B. Load balancing Algorithm
1) Overview: A large-scale distributed file system is in
a load-balanced state if each chunkserver hosts no
more than A chunks. In our proposed algorithm, each
chunkserver node I first estimates whether it is
underloaded (light) or overloaded(heavy) without
global knowledge. A node is light if the number of
chunks it hosts is smaller than the threshold of (1 − ΔL
)A (where 0 ≤ ΔL < 1). In contrast, a heavy node
manages the number of chunks greater than (1+ΔU
)A, where 0 ≤ ΔU < 1 ΔL and ΔU are system
parameters. In the following discussion, if a node i
departs and rejoins as a successor of another node j,
then we represent node i as node j + 1, node j’s original
successor as node j + 2, the successor of node j’s
original successor as node j + 3, and so on. For each
node i ∈ V , if node i is light, then it seeks a heavy node
and takes over at most A chunks from the heavy node.
 We first present a load balancing algorithm, in
which each node has global knowledge regarding the
system, that leads to low movement cost and fast
convergence. We then extend this algorithm for the
situation that the global knowledge is not available to
each node without degrading its performance. Based
on the global knowledge, if node i finds it is the
least-loaded node in the system, i leaves the system by
migrating its locally hosted chunks to its successor i +
1 and then rejoins instantly as the successor of the
heaviest node (say, node j). To immediately relieve
node j’s load, node i requests min{Lj − A, A} chunks
from j. That is, node i requests A chunks from the
heaviest node j if j’s load exceeds 2A; otherwise, i
requests a load of Lj − A from j to relieve j’s load.
 Node j may still remain as the heaviest node in the
system after it has migrated its load to node i. In this
case, the current least-loaded node, say node i , departs
and then rejoins the system as j’s successor. That is, i
becomes node j + 1, and j’s original successor i thus
becomes node j + 2. Such a process repeats iteratively
until j is no longer the heaviest. Then, the same
process is executed to release the extra load on the next
heaviest node in the system. This process repeats until
all the heavy nodes in the system become light nodes.
Such a load balancing algorithm by mapping the
least-loaded and most loaded nodes in the system has
properties as follows:
 • Low movement cost: As node i is the lightest node
among all chunkservers, the number of chunks
migrated because of i’s departure is small with the
goal of reducing the movement cost.
 • Fast convergence rate: The least-loaded node i in
the system seeks to relieve the load of the heaviest
node j,
 leading to quick system convergence towards the
load time in a sequence can be further improved to

International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

28

reach the global load-balanced system state. The time
complexity of the above algorithm can be reduced if
each light node can know which heavy node it needs to
request chunks beforehand, and then all light nodes
can balance their loads in parallel. Thus, we extend
the algorithm by pairing the top-k1 underloaded nodes
with the top-k2 overloaded nodes. We use U to denote
the set of top-k1 underloaded nodes in the sorted list of
underloaded nodes, and use O to denote the set of
top-k2 overloaded nodes in the sorted list of
overloaded nodes. Based on the above-introduced load
balancing algorithm, the light node that should
request chunks from the k2 -th (k2 ≤ k2) most loaded
node in O is the k1 –th

where the summation denotes the sum of the excess
loads in the top-k2 heavy nodes. It means the top-k1
light nodes should leave and rejoin as successors of the
top –k2 overloaded nodes.
We have introduced our algorithm when each node
has global knowledge of the loads of all nodes in the
system. However, it is a formidable challenge for each
node to have such global knowledge in a large-scale
and dynamic computing environment. We then
introduce our basic algorithms that perform the above
idea in a distributed manner without global knowledge
in Section III-B2. Section III-B3 improves our
proposal by taking advantage of physical network
locality to reduce network traffic caused by the
migration of file chunks. Recall that we first assume
that the nodes have identical capacities in order to
simplify the discussion. We then discuss the
exploitation of node capacity heterogeneity in Section
III-B4. Finally, high file availability is usually
demanded from large-scale and dynamic distributed
storage systems that are prone to failures. To deal with
this issue, Section III-B5 discusses the maintenance of
replicas for each file chunk..
 2) Basic Algorithms: Algorithms 1 and 2 (see
Appendix C) detail our proposal; Algorithm 1 species
the operation that a light node i seeks an overloaded
node j, and Algorithm 2 shows that i requests some file
chunks from j. Without global knowledge, pairing the
top-k1 light nodes with the top-k2 heavy nodes is
clearly challenging. We tackle this challenge by
enabling a node to execute the load balancing
algorithm introduced in Section III-B1 based on a
sample of nodes. In the basic algorithm, each node
implements the gossip-based aggregation protocol in
[26], [27] to collect the load statuses of a sample of
randomly selected nodes. Specifically, each node
contacts a number of randomly selected nodes in the

system and builds a vector denoted by V. A vector
consists of entries, and each entry contains the ID,
network address and load status of a randomly selected
node. Using the gossip-based protocol, each node i
exchanges its locally maintained vector with its
neighbors until its vector has s entries. It then
calculates the average load of the s nodes denoted by
Ai and regards it as an estimation of A (Line 1 in
Algorithm 1).
 If node i finds itself is a light node (Line 2 in
Algorithm 1), it seeks a heavy node to request chunks.
Node i sorts the nodes in its vector including itself
based on the load status and finds its position k1 in the
sorted list, i.e., it is the top-k1 underloaded node in the
list (Lines 3-5 in Algorithm 1). Node i finds the top-k2
overloaded nodes in the list such that the sum of these
nodes’ excess loads is the least greater than or equal to
k1 Ai (Line 6 in Algorithm 1). Formula (ii) in the
algorithm is derived from Eq. (3). The complexity of
the step in Line 6 is O(|V|).
Then, the k2 -th overloaded node is the heavy node
that node I needs to request chunks (Line 7 in
Algorithm 1). Considering the step in Line 4, the
overall complexity of Algorithm 1 is then O(|V| log
|V|).
 Our proposal is distributed in the sense that each
node in the system performs Algorithms 1 and 2
simultaneously without synchronization. It is possible
that a number of distinct nodes intend to share the load
of node j (Line 1 of Algorithm 2). Thus, j offloads parts
of its load to a randomly selected node among the
requesters. Similarly, a number of heavy nodes may
select an identical light node to share their loads. If so,
the light node randomly picks one of the heavy nodes
in the reallocation. The nodes perform our load
rebalancing algorithm periodically, and they balance
their loads and minimize the movement cost in a
best-effort fashion.

Example: Fig. 2 depicts a working example of our
proposed algorithm. There are n = 10 chunkservers in
the system; the initial loads of the nodes are shown in
Fig. 2(a). Assume ΔL = ΔU = 0 in the example. Then,
nodes N 1, N 2, N 3, N 4 and N 5 are light, and nodes
N 6, N 7, N 8, N 9, and N 10 are heavy. Each node
performs the load balancing algorithm independently,
and we choose N 1 as an example to explain the load
balancing algorithm. N 1 first queries the loads of N 3,
N 6, N 7, and N 9 selected randomly from the system
(Fig. 2(b)). Based on the samples, N 1 estimates the
ideal load A (i.e., AN 1 = LN 1 +LN 3 +LN 6 +LN 7
+LN 9). It notices that it is a light5 node. It then finds
the heavy node it needs to request chunks. The heavy
node is the most loaded node (i.e., N 9) as N 1 is the
lightest among N1 and its sampled nodes {N 3, N 6, N
7, N 9} (Line 6 in Algorithm 1). N 1 then sheds its
load to its successor N 2, departs from the system, and
rejoins the system as the successor of N 9. N 1

International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

29

allocates min{LN 9 − AN 1 , AN 1 }= AN 1 chunks
from N 9 (Lines 5 and 6 in Algorithm 2). In the
example, N 4 also performs the load rebalancing
algorithm by first sampling {N 3, N 4, N 5, N 6, N 7}
(Fig. 2(d)). Similarly, N 4 determines to rejoin as the
successor of N 6. N 4 then migrates its load to N 5 and
rejoins as the successor of N 6 (Fig. 2(e)). N 4 requests
min{LN 6 − AN 4 , AN 4 }= L6 − AN 4 be k (where k
≤ |V | = n).

Fig 2

3) Exploiting Physical Network Locality: A DHT
network is an overlay on the application level. The
logical proximity abstraction derived from the DHT
does not necessarily match the physical proximity
information in reality. That means a message
traveling between two neighbors in a DHT overlay
may travel a long physical distance through several
physical network links. In the load balancing
algorithm, a light node i may rejoin as a successor of a
remote heavy node j. Then, the requested chunks
migrated from j to i need to traverse several physical
network links, thus generating considerable network
traffic and consuming significant network resources
(i.e., the buffers in the switches on a communication
path for transmitting a file chunk from a source node
to a destination node).
 To demonstrate Algorithm 3, consider the example
shown in Fig. 2. Let nV = 2. In addition to the sample
set V1 = {N 1, N 3, N 6, N 7, N 9} (Fig. 2(b)), N 1
gathers another sample set, say, V2 = {N 1, N 4, N 5,
N 6, N 8}. N 1 identifies the heavy node N 9 in V1 and
N 8 in V2 . Suppose N 9 is physically closer to N 1
than N 8. Thus, N 1 rejoins as a successor of N 9 and
then receives chunks from N 9. Node i also offloads its
original load to its successor. For example, in Figs.
2(a) and (b), node N 1 migrates its original load to its

successor node N 2 before N 1 rejoins as node N 9’s
successor. To minimize the network traffic overhead
in shifting the load of the light node i to node i + 1, we
suggest initializing the DHT network such that every
two nodes with adjacent IDs (i.e., nodes i and i + 1) are
geometrically close. As such, given the potential IP
addresses of the participating nodes (a
four-dimensional lattice) in a storage
network, we depend on the space-filling curve
technique (e.g.,Hilbert curve in [28]) to assign IDs to
the nodes, making physically-close nodes have
adjacent IDs. More specifically, given a
four-dimensional lattice representing all IP addresses
of storage nodes, the space-filling curve attempts to
visit each IP address and assign a unique ID to each
address such that geometrically close IP addresses are
assigned with numerically close IDs. By invoking the
space filling curve function with the input of an IP
address, a unique numerical ID is returned.
 our proposal organizes nodes in the Chord ring
such that adjacent nodes in the ring are physically
close. Before rejoining a node, the node departs and
migrates its locally hosted file chunks to its physically
close successor. The simulation results illustrate that ≈
45% of file chunks in our proposal are moved to the
physically closest nodes, which is due to our design
having a locality-aware Chord ring (see Fig. 9).
Interested readers may refer to Appendix E for the
analytical model that details the performance of the
locality-oblivious and locality-aware approaches
discussed in this section. Moreover, in Appendix E,
the effects of the different numbers of racks in
centralized matching and the different numbers of
node vectors n maintained by a node in our proposal
are investigated.

We then investigate the effect of node heterogeneity
for centralized matching, distributed matching, and
our proposal. In this experiment, the capacities of
nodes follow the power-law distribution, namely, the
Zipf distribution [28]–[30]. Here, the ideal number of
file chunks per unit capacity a node should host is
approximately equal to γ = 0.5. The maximum and
minimum capacities are 110 and 2, respectively, and
the mean is ≈ 11. Fig. 10 shows the simulation results
for workload C. In Fig. 10, the ratio of the number of
file chunks hosted by each node i ∈ V to i’s capacity,
denoted by ρ, is measured. Node i attempts to
minimize ρ−γ in order to approach its load-balanced
state. The simulation results indicate that centralized
matching performs better than distributed matching
and our proposal. This is because capable nodes in
distributed matching and our proposal may need to
offload their loads to their successors that are
incapable of managing large numbers of file chunks.
We also see that our proposal manages to perform
reasonably well, clearly outperforming distributed

International Journal of Advanced Computational Engineering and Networking, ISSN (p): 2320-2106, Volume – 1, Issue – 1, Mar-2013

 Load Balancing For Distributed File Systems

30

matching. In our proposal, although a light node may
shed its load to its successor j, which is incapable and
accordingly overloaded, another light node can
quickly discover the heavy node j to share j’s load. In
particular, our proposal seeks the top-k light nodes in
the reallocation and thus reduces the movement
distributed matching.
 A novel load balancing algorithm to deal with the
load rebalancing problem in large-scale, dynamic, and
distributed file systems in clouds has been presented in
this paper. Our proposal strives to balance the loads of
nodes and reduce the demanded movement cost as
much as possible, while taking advantage of physical
network locality and node heterogeneity. In the
absence of representative real workloads (i.e., the
distributions of file chunks in a large-scale storage
system) in the public domain, we have investigated the
performance of our proposal and compared it against
competing algorithms through synthesized
probabilistic distributions of file chunks. The
synthesis workloads stress test the load balancing
algorithms by creating a few storage nodes that are
heavily loaded. The computer simulation results are
encouraging, indicating that our proposed algorithm
performs very well. Our proposal is comparable to the
centralized algorithm in the Hadoop HDFS production
system and dramatically outperforms the competing
distributed algorithm in [33] in terms of load
imbalance factor, movement cost, and algorithmic
overhead. Particularly, our load balancing algorithm
exhibits a fast convergence rate. The efficiency and
effectiveness of our design are further validated by
analytical models and a real implementation with a
small-scale cluster environment.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” in Proc. 6th Symp. Operating
System Design and Implementation (OSDI’04), Dec. 2004, pp.
137–150.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,”in Proc. 19th ACM Symp. Operating Systems
Principles (SOSP’03), Oct.2003, pp. 29–43.

[3] Hadoop Distributed File System, http://hadoop.apache.org/hdfs/.
[4] VMware, http://www.vmware.com/.
[5] Xen, http://www.xen.org/.
[6] Apache Hadoop, http://hadoop.apache.org/.
[7] Hadoop Distributed File System, “Rebalancing

Blocks,”http://developer.yahoo.com/hadoop/tutorial/module2.h
tml#rebalancing.

[8] K. McKusick and S. Quinlan, “GFS: Evolution on Fast-Forward,”
Commun. ACM, vol. 53, no. 3, pp. 42–49, Jan. 2010.

[9]HDFSFederation,http://hadoop.apache.org/common/docs/r0.23.0/
hadoop-yarn/hadoop-yarn-site/Federation.htm

[10] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek,F. Dabek, and H. Balakrishnan, “Chord: a Scalable
Peer-to-Peer Lookup Protocol for Internet Applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–21, Feb. 2003.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” LNCS 2218, pp. 161–172, Nov. 2001.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman,A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo:Amazon’s Highly Available Key-value
Store,” in Proc. 21st ACM Symp. Operating Systems
Principles (SOSP’07), Oct. 2007, pp. 205–220.

[13] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” in Proc. 2nd Int’l
Workshop Peer- to-Peer Systems (IPTPS’02), Feb. 2003, pp.
68–79.

[14] D. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” in Proc. 16th ACM
Symp. Parallel Algorithms and Architectures (SPAA’04), June
2004, pp. 36–48

[15] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing
of Range-Partitioned Data with Applications to Peer-to-Peer
Systems,” in Proc. 13thInt’l Conf. Very Large Data Bases
(VLDB’04), Sept. 2004, pp. 444–455.

[16] J. W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” in Proc. 1st Int’l
Workshop Peer-to-Peer Systems (IPTPS’03), Feb. 2003, pp.
80–87.

[17] G. S. Manku, “Balanced Binary Trees for ID Management and
Load Balance in Distributed Hash Tables,” in Proc. 23rd ACM
Symp. Principles Distributed Computing (PODC’04), July
2004, pp. 197–205.

[18] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” in Proc. ACM
SIGCOMM’04, Aug. 2004, pp. 353–366.

[19] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing
for DHT- Based P2P Systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 16, no. 4, pp. 349–361, Apr. 2005.

[20] H. Shen and C.-Z. Xu, “Locality-Aware and Churn-Resilient
Load Bal-ancing Algorithms in Structured P2P Networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 6, pp. 849–862,
June 2007.

[21] Q. H. Vu, B. C. Ooi, M. Rinard, and K.-L. Tan,
“Histogram-Based Global Load Balancing in Structured
Peer-to-Peer Systems,” IEEE Trans. Knowl.data Eng., vol. 21,
no. 4, pp. 595–608, Apr. 2009.

[22] H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C. Huang, “Load
Balance with Imperfect Information in Structured Peer-to-Peer
Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp.
634–649, Apr. 2011.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and
Co., 1979.

[24] D. Eastlake and P. Jones, “US Secure Hash Algorithm 1
(SHA1),” RFC 3174, Sept. 2001.

[25] M. Raab and A. Steger, “Balls into Bins—A Simple and Tight
Analysis,”LNCS 1518, pp. 159–170, Oct. 1998.

[26] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-Based
Aggregation in Large Dynamic Networks,” ACM Trans.
Comput. Syst., vol. 23, no. 3, pp. 219–252, Aug. 2005.

[27] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M.
V. Steen, “Gossip-Based Peer Sampling,” ACM Trans. Comput.
Syst., vol. 25, no. 3, Aug. 2007.

[28] H. Sagan, Space-Filling Curves, 1st ed. Springer, 1994.
[29] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y.

Zhang, and S. Lu, “BCube: A High Performance, Server-Centric
Network Architecture for Modular Data Centers,” in Proc.
ACM SIGCOMM’09, Aug. 2009,



