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Abstract— In Distibuted file systems, nodes simultaneously serve computing and storage functions; a file is partitioned 

into a number of chunks allocated in distinct nodes so that MapReduce tasks can be performed in parallel over the nodes. 
However, in a distributed computing environment, failure is the norm, and nodes may be upgraded, replaced, and added in the 
system. Files can also be dynamically created, deleted, and appended. This results in load imbalance in a distributed file 
system; that is, the file chunks are not distributed as uniformly as possible among the nodes. Emerging distributed file systems 
in production systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a 
large-scale, failure-prone environment because the central load balancer is put under considerable workload that is linearly 
scaled with the system size, and may thus become the performance bottleneck and the single point of failure. In this paper, a 
fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem. Our algorithm is compared 
against a centralized approach in a production system and a competing distributed solution presented in the literature. The 
simulation results indicate that our proposal is comparable with the existing centralized approach and considerably 
outperforms the prior distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead. The 
performance of our proposal implemented in the Hadoop distributed file system is further investigated in a cluster 
environment. 
 
Keywords- Distributed file systems, Load balancing,Cloud environment. 
 
 
I. INTRODUCTION 

 
In distributed file system environment, clients can 
dynamically allocate their resources on-demand 
without sophisticated deployment and management of 
resources. Key enabling technologies for clouds 
include the Map Reduce programming paradigm [1], 
distributed file systems (e.g., [3], [4]), virtualization 
(e.g., [4], [5]), and so forth. These techniques 
emphasize scalability, so clouds (e.g., [6]) can be large 
in scale, and comprising entities can arbitrarily fail 
and join while maintaining system reliability. 
   Distributed file systems are key building blocks for 
cloud computing applications based on the Map 
Reduce programming paradigm. In such file systems, 
nodes simultaneously serve computing and storage 
functions; a file is partitioned into a number of chunks 
allocated in distinct nodes so that Map Reduce tasks 
can be performed in parallel over the nodes. For 
example, consider a word count application that 
counts the number of distinct words and the frequency 
of each unique word in a large file. In such an 
application, a cloud partitions the file into a large 
number of disjointed and fixed-size pieces (or file 
chunks) and assigns them to different cloud storage 
nodes (i.e., chunk servers). Each storage node (or node 
for short) then calculates the frequency of each unique 
word by scanning and parsing its local file chunks. 
   In such a distributed file system, the load of a node is 
typically proportional to the number of file chunks the 
node possesses [4]. Because the files in a cloud can be 
arbitrarily created, deleted, and appended, and nodes 
can be upgraded, replaced and added in the file system  

 
[7], the file chunks are not distributed as uniformly as 
possible among the nodes. Load balance among 
storage nodes is a critical function in clouds. In a 
load-balanced cloud, the resources can be well utilized 
and provisioned, maximizing the performance of 
MapReduce-based applications. 
   State-of-the-art distributed file systems (e.g., Google 
GFS [3] and Hadoop HDFS [4]) in clouds rely on 
central nodes to manage the metadata information of 
the file systems and to balance the loads of storage 
nodes based on that metadata. The centralized 
approach simplifies the design and implementation of 
a distributed file system. However, recent experience 
(e.g., [8]) concludes that when the number of storage 
nodes, the number of files and the number of accesses 
to files increase linearly, the central nodes (e.g., the 
master in Google GFS) become a performance 
bottleneck, as they are unable to accommodate a large 
number of file accesses due to clients and MapReduce 
applications. Thus, depending on the central nodes to 
tackle the load imbalance problem exacerbate their 
heavy loads. Even with the latest development in 
distributed file systems, the central nodes may still be 
overloaded. For example, HDFS federation [15] 
suggests an architecture with multiple name nodes 
(i.e., the nodes managing the metadata information). 
Its file system namespace is statically and manually 
partitioned to a number of name nodes. However, as 
the workload experienced by the name nodes may 
change over time and no adaptive workload 
consolidation and/or migration scheme is offered to 
balance the loads among the name nodes, any of the 
name nodes may become the performance bottleneck. 
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 In this paper, we are interested in studying the load 
re-balancing problem in distributed file systems 
specialized for large-scale, dynamic and 
data-intensive clouds. (The terms “rebalance” and 
“balance” are interchangeable in this paper.) 
dynamism, simplifying the system provision. 

 
In summary, our contributions are threefold as 

follows: 
 By leveraging DHTs, we present a load 

rebalancing algorithm for distributing file chunks 
as uniformly as possible and minimizing the 
movement cost as much as possible. Particularly, 
our proposed algorithm operates in a distributed 
manner in which nodes perform their load 
balancing tasks independently without 
synchronization or global knowledge regarding 
the system. 

 Load balancing algorithms based on 
DHTs have beenextensively studied (e.g., 
[27]–[30], [33]–[38]). However, most existing 
solutions are designed without considering 
both movement cost and node heterogeneity 
and may introduce significant maintenance 
network traffic to the DHTs. In contrast, our 
proposal not only takes advantage of physical 
network locality in the reallocation of file 
chunks to reduce the movement cost but also 
exploits capable nodes to improve the overall 
system performance. 

 
Additionally, our algorithm reduces algorithmic 

overhead introduced to the DHTs as much as possible. 
 
II. LOAD BALANCING PROBLEM 

 
We consider a large-scale distributed file system 
consisting of a set of chunk servers V in a cloud, where 
the cardinality of V is |V | = n. Typically, n can be one 
thousand, ten thousand, or more. In the system, a 
number of files are stored in the n chunk servers. First, 
let’s denote the set of files as F .Each file f ∈ F is 
partitioned into a number of disjointed, fixed-size 
chunks denoted by Cf . For example, each chunk has 
the same size, 64 Mbytes, in Hadoop HDFS [4]. 
Second, the load of a chunk server is proportional to 
the number of chunks hosted by the server [4]. Third, 
node failure is the norm in such a distributed system, 
and the chunk servers may be upgraded, replaced and 
added in the system. Finally, the files in F may be 
arbitrarily created, deleted, and appended. The net 
effect results in file chunks not being uniformly 
distributed to the chunk servers. Fig. 1 illustrates an 
example of the load rebalancing problem with the 
assumption that the chunk servers are homogeneous 
and have the same capacity. 
   Our objective in the current study is to design a load 
rebalancing algorithm to reallocate file chunks such 

that the chunks can be distributed to the system as 
uniformly as possible while reducing the movement 
cost as much as possible. Here, the movement cost is 
defined as the number of chunks migrated to balance 
the loads of the chunkservers.  
 

n

N
V Ff

||   

Let A be the ideal number of chunks that any 
chunkserver i ∈ V is required to manage in a 
system-wide load-balanced state, that is, 

n

C
A Ff

||   

Then, our load rebalancing algorithm aims to 
minimize the load imbalance factor in each chunk 
server I as follows, 

ii AL   

where iL  denotes the load of node i (i.e., the number 
of file chunks hosted by i) and ||·|| represents the 
absolute value function. Note that “chunkservers” and 
“nodes” are interchangeable 
in this paper. 
 
III. PROPOSAL 

 
A. Architecture 

The chunkservers in our proposal are organized as a 
DHT network; that is, each chunkserver implements a 
DHT protocol such as Chord [18] or Pastry [19]. A file 
in the system is partitioned into a number of fixed-size 
chunks, and “each” chunk has a unique chunk handle 
(or chunk identifier) named with a globally known 
hash function such as SHA1 [24]. The hash function 
returns a unique identifier for a given file’s path-name 
string and a chunk index. For example, the identifiers 
of the first and third chunks of file 
“/user/tom/tmp/a.log” are respectively 
SHA1(/user/tom/tmp/a.log, 0) and 
SHA1(/user/tom/tmp/a.log, 2). Each chunkserver also 
has a unique ID. We represent the IDs of the 
chunkservers 1 2 3 in V by 1/n,2/n,….n/n; for short, 
denote the n chunkservers n as 1, 2, 3, · · · , n. Unless 
otherwise clearly indicated, we denote the successor of 
chunkserver i as chunkserver i + 1 and the successor of 
chunkserver n as chunkserver 1. In a typical DHT, a 
chunkserver i hosts the file chunks whose handles are 
within  i( i−1 , n ], except for chunkserver n, which 
manages the chunks n1 whose handles are in ( n , n ].n 
To discover a file chunk, the DHT lookup operation is 
performed. In most DHTs, the average number of 
nodes visited for a lookup is O(log n) [18], [19] if each 
chunkserver I maintains log2 n neighbors, that is, 
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nodes i + 2k mod n for k = 0, 1, 2, · · · , log2 n − 1. 
Among the log2 n neighbors, the one i + 20 is the 
successor of i. To look up a file with l chunks,l lookups 
are issued. 
   DHTs are used in our proposal for the following 
reasons: 
   • The chunkservers self-configure and self-heal in 
our pro- 
      posal because of their arrivals, departures, and 
failures, 
      simplifying the system provisioning and 
management. 
Specifically, typical DHTs guarantee that if a node     
leaves, then its locally hosted chunks are reliably 
migrated to its successor; the joining node from its 
successor to manage. Our proposal heavily depends on 
the node arrival and departure operations to migrate 
file chunks among nodes Interested readers are 
referred to [18], [1] for the details of the 
self-management technique in DHTs. 
   • While lookups take a modest delay by visiting 
O(log n) 
      nodes in a typical DHT, the lookup latency can be 
reduced because discovering the l chunks of a file can 
be performed in parallel. On the other hand, our 
proposal is independent of the DHT protocols. To 
further reduce the lookup latency 
     we can adopt state-of-the-art DHTs such as 
Amazon’s Dynamo in [22] that offer one-hop lookup 
delay. 
   • The DHT network is transparent to the metadata 
management in our proposal. While the DHT network 
specifies the locations of chunks, our proposal can be 
integrated with existing large-scale distributed file 
systems, e.g., Google GFS [3] and Hadoop HDFS [4], 
in which a centralized master node manages the 
namespace of the file system and the mapping of file 
chunks to storage nodes. Specifically, to incorporate 
our proposal with the master node in GFS, each 
chunkserver periodically piggybacks its locally hosted 
chunks’ information to the master in a heartbeat 
message [3] so that the master can gather the locations 
of chunks in the system. 
   • In DHTs, if nodes and file chunks are designated 
with uniform IDs, the maximum load of a node is 
guaranteed to be O(log n) times the average in a 
probability of 1 − 
         1O( n ) [25], [33], [35], thus balancing the loads 
of nodes to a certain extent. However, our proposal 
presented in Section III-B performs well for both 
uniform and non- uniform distributions of IDs of 
nodes and file chunks due to arbitrary file 
creation/deletion and node arrival/departure. 
   As discussed, the load rebalancing problem defined 
in Section II is N P-hard, which is technically 
challenging and thus demands an in-depth study. 
Orthogonal issues such as metadata management, file 
consistency models and replication strategies are out 

of the scope of our study, and independent studies are 
required. 

B. Load balancing Algorithm 
1) Overview: A large-scale distributed file system is in 
a load-balanced state if each chunkserver hosts no 
more than A chunks. In our proposed algorithm, each 
chunkserver node I first estimates whether it is 
underloaded (light) or overloaded(heavy) without 
global knowledge. A node is light if the number of 
chunks it hosts is smaller than the threshold of (1 − ΔL 
)A (where 0 ≤ ΔL < 1). In contrast, a heavy node 
manages the number of chunks greater than (1+ΔU 
)A, where 0 ≤ ΔU < 1 ΔL and ΔU are system 
parameters. In the following discussion, if a node i 
departs and rejoins as a successor of another node j, 
then we represent node i as node j + 1, node j’s original 
successor as node j + 2, the successor of node j’s 
original successor as node j + 3, and so on. For each 
node i ∈ V , if node i is light, then it seeks a heavy node 
and takes over at most A chunks from the heavy node. 
   We first present a load balancing algorithm, in 
which each node has global knowledge regarding the 
system, that leads to low movement cost and fast 
convergence. We then extend this algorithm for the 
situation that the global knowledge is not available to 
each node without degrading its performance. Based 
on the global knowledge, if node i finds it is the 
least-loaded node in the system, i leaves the system by 
migrating its locally hosted chunks to its successor i + 
1 and then rejoins instantly as the successor of the 
heaviest node (say, node j). To immediately relieve 
node j’s load, node i requests min{Lj − A, A} chunks 
from j. That is, node i requests A chunks from the 
heaviest node j if j’s load exceeds 2A; otherwise, i 
requests a load of Lj − A from j to relieve j’s load. 
   Node j may still remain as the heaviest node in the 
system after it has migrated its load to node i. In this 
case, the current least-loaded node, say node i , departs 
and then rejoins the system as j’s successor. That is, i 
becomes node j + 1, and j’s original successor i thus 
becomes node j + 2. Such a process repeats iteratively 
until j is no longer the heaviest. Then, the same 
process is executed to release the extra load on the next 
heaviest node in the system. This process repeats until 
all the heavy nodes in the system become light nodes. 
Such a load balancing algorithm by mapping the 
least-loaded and most loaded nodes in the system has 
properties as follows: 
   • Low movement cost: As node i is the lightest node 
among all chunkservers, the number of chunks 
migrated because of i’s departure is small with the 
goal of reducing the  movement cost. 
   • Fast convergence rate: The least-loaded node i in 
the system seeks to relieve the load of the heaviest 
node j, 
      leading to quick system convergence towards the 
load time in a sequence can be further improved to 
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reach the global load-balanced system state. The time 
complexity of the above algorithm can be reduced if 
each light node can know which heavy node it needs to 
request chunks beforehand, and then all light nodes 
can balance their loads in parallel. Thus, we extend 
the algorithm by pairing the top-k1 underloaded nodes 
with the top-k2 overloaded nodes. We use U to denote 
the set of top-k1 underloaded nodes in the sorted list of 
underloaded nodes, and use O to denote the set of 
top-k2 overloaded nodes in the sorted list of 
overloaded nodes. Based on the above-introduced load 
balancing algorithm, the light node that should 
request chunks from the k2 -th (k2 ≤ k2 ) most loaded 
node in O is the k1 –th 
 

 
 
where the summation denotes the sum of the excess 
loads in the top-k2 heavy nodes. It means the top-k1 
light nodes should leave and rejoin as successors of the 
top –k2 overloaded nodes. 
We have introduced our algorithm when each node 
has global knowledge of the loads of all nodes in the 
system. However, it is a formidable challenge for each 
node to have such global knowledge in a large-scale 
and dynamic computing environment. We then 
introduce our basic algorithms that perform the above 
idea in a distributed manner without global knowledge 
in Section III-B2. Section III-B3 improves our 
proposal by taking advantage of physical network 
locality to reduce network traffic caused by the 
migration of file chunks. Recall that we first assume 
that the nodes have identical capacities in order to 
simplify the discussion. We then discuss the 
exploitation of node capacity heterogeneity in Section 
III-B4. Finally, high file availability is usually 
demanded from large-scale and dynamic distributed 
storage systems that are prone to failures. To deal with 
this issue, Section III-B5 discusses the maintenance of 
replicas for each file chunk.. 
   2) Basic Algorithms: Algorithms 1 and 2 (see 
Appendix C) detail our proposal; Algorithm 1 species 
the operation that a light node i seeks an overloaded 
node j, and Algorithm 2 shows that i requests some file 
chunks from j. Without global knowledge, pairing the 
top-k1 light nodes with the top-k2 heavy nodes is 
clearly challenging. We tackle this challenge by 
enabling a node to execute the load balancing 
algorithm introduced in Section III-B1 based on a 
sample of nodes. In the basic algorithm, each node 
implements the gossip-based aggregation protocol in 
[26], [27] to collect the load statuses of a sample of 
randomly selected nodes. Specifically, each node 
contacts a number of randomly selected nodes in the 

system and builds a vector denoted by V. A vector 
consists of entries, and each entry contains the ID, 
network address and load status of a randomly selected 
node. Using the gossip-based protocol, each node i 
exchanges its locally maintained vector with its 
neighbors until its vector has s entries. It then 
calculates the average load of the s nodes denoted by 
Ai and regards it as an estimation of A (Line 1 in 
Algorithm 1). 
   If node i finds itself is a light node (Line 2 in 
Algorithm 1), it seeks a heavy node to request chunks. 
Node i sorts the nodes in its vector including itself 
based on the load status and finds its position k1 in the 
sorted list, i.e., it is the top-k1 underloaded node in the 
list (Lines 3-5 in Algorithm 1). Node i finds the top-k2 
overloaded nodes in the list such that the sum of these 
nodes’ excess loads is the least greater than or equal to 
k1 Ai (Line 6 in Algorithm 1). Formula (ii) in the 
algorithm is derived from Eq. (3). The complexity of 
the step in Line 6 is O(|V|). 
Then, the k2 -th overloaded node is the heavy node 
that node I needs to request chunks (Line 7 in 
Algorithm 1). Considering the step in Line 4, the 
overall complexity of Algorithm 1 is then O(|V| log 
|V|). 
 Our proposal is distributed in the sense that each 
node in the system performs Algorithms 1 and 2 
simultaneously without synchronization. It is possible 
that a number of distinct nodes intend to share the load 
of node j (Line 1 of Algorithm 2). Thus, j offloads parts 
of its load to a randomly selected node among the 
requesters. Similarly, a number of heavy nodes may 
select an identical light node to share their loads. If so, 
the light node randomly picks one of the heavy nodes 
in the reallocation. The nodes perform our load 
rebalancing algorithm periodically, and they balance 
their loads and minimize the movement cost in a 
best-effort fashion. 
 
Example: Fig. 2 depicts a working example of our 
proposed algorithm. There are n = 10 chunkservers in 
the system; the initial loads of the nodes are shown in 
Fig. 2(a). Assume ΔL = ΔU = 0 in the example. Then, 
nodes N 1, N 2, N 3, N 4 and N 5 are light, and nodes 
N 6, N 7, N 8, N 9, and N 10 are heavy. Each node 
performs the load balancing algorithm independently, 
and we choose N 1 as an example to explain the load 
balancing algorithm. N 1 first queries the loads of N 3, 
N 6, N 7, and N 9 selected randomly from the system 
(Fig. 2(b)). Based on the samples, N 1 estimates the 
ideal load A (i.e., AN 1 = LN 1 +LN 3 +LN 6 +LN 7 
+LN 9 ). It notices that it is a light5 node. It then finds 
the heavy node it needs to request chunks. The heavy 
node is the most loaded node (i.e., N 9) as N 1 is the 
lightest among N1 and its sampled nodes {N 3, N 6, N 
7, N 9} (Line 6 in Algorithm 1). N 1 then sheds its 
load to its successor N 2, departs from the system, and 
rejoins the system as the successor of N 9. N 1 
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allocates min{LN 9 − AN 1 , AN 1 }= AN 1 chunks 
from N 9 (Lines 5 and 6 in Algorithm 2).   In the 
example, N 4 also performs the load rebalancing 
algorithm by first sampling {N 3, N 4, N 5, N 6, N 7} 
(Fig. 2(d)).  Similarly, N 4 determines to rejoin as the 
successor of N 6. N 4 then migrates its load to N 5 and 
rejoins as the successor of N 6  (Fig. 2(e)). N 4 requests 
min{LN 6 − AN 4 , AN 4 }= L6 − AN 4 be k (where k 
≤ |V | = n). 

 
Fig 2 

 
3) Exploiting Physical Network Locality: A DHT 
network is an overlay on the application level. The 
logical proximity abstraction derived from the DHT 
does not necessarily match the physical proximity 
information in reality. That means a message 
traveling between two neighbors in a DHT overlay 
may travel a long physical distance through several 
physical network links. In the load balancing 
algorithm, a light node i may rejoin as a successor of a 
remote heavy node j. Then, the requested chunks 
migrated from j to i need to traverse several physical 
network links, thus generating considerable network 
traffic and consuming significant network resources 
(i.e., the buffers in the switches on a communication 
path for transmitting a file chunk from a source node 
to a destination node). 
   To demonstrate Algorithm 3, consider the example 
shown in Fig. 2. Let nV = 2. In addition to the sample 
set V1 = {N 1, N 3, N 6, N 7, N 9} (Fig. 2(b)), N 1 
gathers another sample set, say, V2 = {N 1, N 4, N 5, 
N 6, N 8}. N 1 identifies the heavy node N 9 in V1 and 
N 8 in V2 . Suppose N 9 is physically closer to N 1 
than N 8. Thus, N 1 rejoins as a successor of N 9 and 
then receives chunks from N 9. Node i also offloads its 
original load to its successor. For example, in Figs. 
2(a) and (b), node N 1 migrates its original load to its 

successor node N 2 before N 1 rejoins as node N 9’s 
successor. To minimize the network traffic overhead 
in shifting the load of the light node i to node i + 1, we 
suggest initializing the DHT network such that every 
two nodes with adjacent IDs (i.e., nodes i and i + 1) are 
geometrically close. As such, given the potential IP 
addresses of the participating nodes (a 
four-dimensional lattice) in a storage 
network, we depend on the space-filling curve 
technique (e.g.,Hilbert curve in [28]) to assign IDs to 
the nodes, making physically-close nodes have 
adjacent IDs. More specifically, given a 
four-dimensional lattice representing all IP addresses 
of storage nodes, the space-filling curve attempts to 
visit each IP address and assign a unique ID to each 
address such that geometrically close IP addresses are 
assigned with numerically close IDs. By invoking the 
space filling curve function with the input of an IP 
address, a unique numerical ID is returned. 
  our proposal organizes nodes in the Chord ring 
such that adjacent nodes in the ring are physically 
close. Before rejoining a node, the node departs and 
migrates its locally hosted file chunks to its physically 
close successor. The simulation results illustrate that ≈ 
45% of file chunks in our proposal are moved to the 
physically closest nodes, which is due to our design 
having a locality-aware Chord ring (see Fig. 9). 
Interested readers may refer to Appendix E for the 
analytical model that details the performance of the 
locality-oblivious and locality-aware approaches 
discussed in this section. Moreover, in Appendix E, 
the effects of the different numbers of racks in 
centralized matching and the different numbers of 
node vectors n maintained by a node in our proposal 
are investigated.  
 
We then investigate the effect of node heterogeneity 
for centralized matching, distributed matching, and 
our proposal. In this experiment, the capacities of 
nodes follow the power-law distribution, namely, the 
Zipf distribution [28]–[30]. Here, the ideal number of 
file chunks per unit capacity a node should host is 
approximately equal to γ = 0.5. The maximum and 
minimum capacities are 110 and 2, respectively, and 
the mean is ≈ 11. Fig. 10 shows the simulation results 
for workload C. In Fig. 10, the ratio of the number of 
file chunks hosted by each node i ∈ V to i’s capacity, 
denoted by ρ, is measured. Node i attempts to 
minimize ρ−γ in order to approach its load-balanced 
state. The simulation results indicate that centralized 
matching performs better than distributed matching 
and our proposal. This is because capable nodes in 
distributed matching and our proposal may need to 
offload their loads to their successors that are 
incapable of managing large numbers of file chunks. 
We also see that our proposal manages to perform 
reasonably well, clearly outperforming distributed 
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matching. In our proposal, although a light node may 
shed its load to its successor j, which is incapable and 
accordingly overloaded, another light node can 
quickly discover the heavy node j to share j’s load. In 
particular, our proposal seeks the top-k light nodes in 
the reallocation and thus reduces the movement 
distributed matching. 
  A novel load balancing algorithm to deal with the 
load rebalancing problem in large-scale, dynamic, and 
distributed file systems in clouds has been presented in 
this paper. Our proposal strives to balance the loads of 
nodes and reduce the demanded movement cost as 
much as possible, while taking advantage of physical 
network locality and node heterogeneity. In the 
absence of representative real workloads (i.e., the 
distributions of file chunks in a large-scale storage 
system) in the public domain, we have investigated the 
performance of our proposal and compared it against 
competing algorithms through synthesized 
probabilistic distributions of file chunks. The 
synthesis workloads stress test the load balancing 
algorithms by creating a few storage nodes that are 
heavily loaded. The computer simulation results are 
encouraging, indicating that our proposed algorithm 
performs very well. Our proposal is comparable to the 
centralized algorithm in the Hadoop HDFS production 
system and dramatically outperforms the competing 
distributed algorithm in [33] in terms of load 
imbalance factor, movement cost, and algorithmic 
overhead. Particularly, our load balancing algorithm 
exhibits a fast convergence rate. The efficiency and 
effectiveness of our design are further validated by 
analytical models and a real implementation with a 
small-scale cluster environment. 
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