
International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-5, May-2014

 Design And Implementation Of Massive Excel Data Intelligent Import System To Database (MYSQL) By Using Libraries

75

DESIGN AND IMPLEMENTATION OF MASSIVE EXCEL DATA
INTELLIGENT IMPORT SYSTEM TO DATABASE (MYSQL) BY

USING LIBRARIES

1KAMALAKANT L BAWANKULE, 2N B.RAUT

1M.Tech 4th (CSE) Student, N.U.V.A. Nagpur
2Assistant Prof., Gurunanak College of Engineering, Nagpur

Abstract—To import nearly 1,0000 to attribute to the tables of 10-20 column information of students and papers database of
Excel format into the target tables of MySQL database, we developed the intelligent import system which distinguished the
simple import system. The system uses Netbeans/Eclipse as the development tool, object-oriented language java as the
programming language, MySQL as the background database, POI-HSSF as the apache Library for reading data from excel,
used AWT and SWING for design of an application ,and uses the mysql-connector as connection technology to database. The
system realizes to import the massive data of Excel format into the MySQL database intellectually that convenient for
integrating and managing the multiple data required for regular examination process in the institutes and universities.HSSF
is the POI Project's pure Java implementation of the Excel '97(-2007) file format. XSSF is the POI Project's pure Java
implementation of the Excel 2007 OOXML (.xlsx) file format.HSSF and XSSF provide ways to read spreadsheets create,
modify, read and write XLS spreadsheets.

Keywords—Database, JAVA, POI-HSSF, HSSF, MySQL, XSSF.

I. INTRODUCTION

Today in many industries employee data, salary data,
purchase data and etc is present in excel format. To
create reports, manipulate and update data we need to
search data in the excel. Data analysis in excel format
is very tedious, while generating report and formats.
Many industries also has their old data in excel so they
need an application to import data from excel to
database (MySQL).Industry should be able to reuse
their old data. POIFSFileSystem is the complete file
system which will be used to handle excel
files.FileInputStream is used to load the excel file to
the application .Data importing application has
facility to read data from excel and import it into
database (MySQL).Excel data is in table format same
as database, apache library functions are used to read
each column in the spreadsheet and store data into
vector or an array. The data in vector or an array is
compiled in a single vector. Direct import of vector to
the database is done through connecting to
mysql.Thier is no limit of reading data massive data
can be read through excel and can be stored into
database. Importing data from excel will help to
generate report and make it easy way to analyze data.
Data imported can be read, write and can be updated if
needed. It becomes very much easy way to for
importing data with apache library HSSF.

II. APACHE POI-HSSF

HSSF is the POI Project's pure Java implementation of
the Excel '97(-2007) file format. XSSF is the POI

Project's pure Java implementation of the Excel 2007
OOXML (.xlsx) file format.

1) HSSF and XSSF provide ways to read
spreadsheets create, modify, read and write XLS
spreadsheets. They provide:
 low level structures for those with special needs
 an event model api for efficient read-only access
 a full usermodel api for creating, reading and

modifying XLS files
2) An alternate way of generating a spreadsheet is
via the Cocoon serializer (yet you'll still be using
HSSF indirectly). With Cocoon you can serialize
any XML datasource (which might be a ESQL page
outputting in SQL for instance) by simply applying
the stylesheet and designating the serializer.
3) If you're merely reading spreadsheet data, then
use the eventmodel api in either the
org.apache.poi.hssf.eventusermodel package, or the
org.apache.poi.xssf.eventusermodel package,
depending on your file format.

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-5, May-2014

 Design And Implementation Of Massive Excel Data Intelligent Import System To Database (MYSQL) By Using Libraries

76

III. DATABASE (MYSQL)

Database has to be maintained by the system to store
information about students, invigilators, class rooms
etc. The various updates must be saved and stored in
the database of the system. Therefore MySQL,
relational database that can handle large amount of
data on relatively cheap hardware has been used. All
the reports, formats will be made available on a single
button click. The automated system helps to save the
time and the laborious work. MySQL is the world's
most used open source relational database
management system (RDBMS) that runs as a server
providing multi-user access to a number of databases.
The SQL phrase stands for Structured Query
Language. Universities, internet service
providers and nonprot organizations are the main
users of MySQL, mainly because of its price. Free
software-open source projects that require a
full-featured database management system often use
MySQL. For commercial use, several paid editions are
available and over additional functionality.

IV. DESIGN AND IMPLEMENTATION

I] Design

Load Excel workbook which contains data in rows and
columns i.e. in the form of table. Create object of
HSSFWorkbook, HSSFSheet and row Iterator which
will help to read the excel sheet present in the
workbook. Create object of HSSFRow, and cell
Iterator to read excel sheet row by row and each cell in
each row. Declare a vector of initialize size as 0; add
each read cell data to vector. Data of the workbook will
be collected completely in the vector. Find the size of
vector, parse the vector and separate each cell data in
vector. Connect to database (MySQL) for adding data
of each cell to database. Add data into database from
vector in the table for each row and for each cell.

II] Implementation/Code

import com.mysql.jdbc.PreparedStatement;
import java.io.FileInputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Iterator;
import java.util.Vector;
import java.util.regex.Pattern;
import javax.swing.JOptionPane;
import org.apache.poi.hssf.usermodel.HSSFCell;
import org.apache.poi.hssf.usermodel.HSSFRow;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import
org.apache.poi.hssf.usermodel.HSSFWorkbook;
import
org.apache.poi.poifs.filesystem.POIFSFileSystem;

Vector cellVectorHolder = new Vector();
 Vector cellVectorHolder1 = new Vector();

 // Code to read the Excel worksheet given by user
try {
FileInputStream myInput = new
FileInputStream(fileName);

POIFSFileSystem myFileSystem = new
 POIFSFileSystem(myInput);

HSSFWorkbook myWorkBook = new
HSSFWorkbook(myFileSystem);

HSSFSheet mySheet =
myWorkBook.getSheetAt(sheetno);

Iterator rowIter = mySheet.rowIterator();

while (rowIter.hasNext()) {

HSSFRow myRow = (HSSFRow) rowIter.next();
Iterator cellIter = myRow.cellIterator();
Vector cellStoreVector = new Vector();

while (cellIter.hasNext()) {

HSSFCell myCell = (HSSFCell) cellIter.next();
cellStoreVector.addElement(myCell);
String stringCellValue1 = myCell.toString();
 }

cellVectorHolder.addElement(cellStoreVector);
 }
 }

catch (Exception ef) {

JOptionPane.showMessageDialog(null, "Sheet index
is out of range (0..etc)");

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-5, May-2014

 Design And Implementation Of Massive Excel Data Intelligent Import System To Database (MYSQL) By Using Libraries

77

JOptionPane.showMessageDialog(null, "All Sheet
Updated Successfully");
 this.hide();

 }

int size = cellVectorHolder.size();
int k = 1, t = 2, r = 3, s = 4, p = 5, m = 0, n = 0,

q = 0, b = 0, a = 0, c = 0;
String srno[] = new String[size];
String seatno[] = new String[size];
String instcode[] = new String[size];
String corsecode[] = new String[size];
String yearcode[] = new String[size];
String mascode[] = new String[size];

for (int i = 0; i < cellVectorHolder.size(); i++) {
Vector cellStoreVector = (Vector)
cellVectorHolder.elementAt(i);
for (int j = 0; j < cellStoreVector.size(); j = k + 6) {
HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();
srno[m] = stringCellValue;
//System.out.print(srno[m]);
m = m + 1;

}
for (int j = k; j < cellStoreVector.size(); j = k + 5) {

HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();
seatno[n] = stringCellValue;
//System.out.print(seatno[n]);
n = n + 1;

}
for (int j = t; j < cellStoreVector.size(); j = t + 4) {

 HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();
instcode[q] = stringCellValue;
//System.out.print(instcode[q]);
q = q + 1;
 }
for (int j = r; j < cellStoreVector.size(); j = r + 3) {
HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();
corsecode[c] = stringCellValue;
//System.out.print(corsecode[c]);
 c = c + 1;
 }
for (int j = s; j < cellStoreVector.size(); j = s + 2) {
HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();

yearcode[b] = stringCellValue;
//System.out.print(yearcode[b]);
b = b + 1;
 }
for (int j = p; j < cellStoreVector.size(); j = p + 1) {
HSSFCell myCell = (HSSFCell)
cellStoreVector.elementAt(j);
String stringCellValue = myCell.toString();
mascode[a] = stringCellValue;
//System.out.print(mascode[a]);
a = a + 1;
 }

 }

V. SYSTEM DESIGN

The below image shows the application system
developed for the massive excel data intelligent import
system to database (MySQL) by using apache POI
libraries.The excel row, column table format data is
read with the help of use of Apache –POI library. After
reading the data it is being imported to MySQL
database.Application is very much useful during the
massive import of data from excel to database, so that
user can perform different types of operation on the
data present in database.

The above developed system needs input as excel file
and user need to give the sheet number he wants to
read. Implementation of the complete system is done
with the help of JAVA .To read data from excel here
used the apache poi library. Spreadsheet data read is
then imported in database (My SQL) with the help of
J-Connector of MySQL and JAVA.

CONCLUSION

Massive Data read from excel in table format and
imported same directly to database with the help of
APACHE POI-HSSF. Less time required for planning
and no need of typing the complete details of
particular seat number of candidate. Less man power
required for planning and arranging the table data. No

International Journal of Advanced Computational Engineering and Networking, ISSN: 2320-2106, Volume-2, Issue-5, May-2014

 Design And Implementation Of Massive Excel Data Intelligent Import System To Database (MYSQL) By Using Libraries

78

tiredness and No frustration. No chance for mistake as
all the reports are system generated. Proposed System
will be helping to save the time, man power and
laborious work. Java application will occupy very less
memory in the system in the bytes.The system will be
user friendly which will help user to make the
examination a grand success.

REFERENCES

[1] http://howtodoinjava.com/2013/06/19/readingwriting-excel-file

s-in-java-poi-tutorial/, “Reading/writing excel files in java : POI
tutorial”.

[2] http://poi.apache.org/spreadsheet/quick-guide.html “Busy
Developers' Guide to HSSF and XSSF Features”.

[3] http://www.vogella.com/articles/JavaExcel/article.html,“Excel
and Java - Read and Write Excel with Java”

[4] http://mrbool.com/reading-excel-file-with-java/24562,”Reading
Excel file with Java”.

[5]
 http://www.javacoderanch.com/how-to-read-excel-file.html,“H
ow to read Excel file ?”.

[6] HTTP:// JAVA-READ-WRITE-EXCEL-FILE-APACHE,“READ /
WRITE EXCEL FILE IN JAVA USING APACHE POI”

[7] http://javabeginnerstutorial.com/code-base/write-excel-file/,“
Read and Write Excel with Java using PoI”.

[8] Andrew C. Oliver, Nicola Ken Barozzi “POI-HSSF and
POI-XSSF - Java API To Access Microsoft Excel Format Files.”

[9] Zhang Ning, Jia Zi-Yan, Shi Zhong-Zhi, Research on
Technology of ETL in Data Warehouse Computer Engineering
and Applications, vol.24, no.12, 2002, pp.212-216.

 [10]
http://dev.mysql.com/doc/connector-j-usagenotes-connect-driver
manager.html,“Connecting to MySQL Using the
JDBC DriverManager Interface”.

[11]
http://java67.blogspot.in/2013/02/how-to-connect-mysql-database-fro
m-java.html,“ Java program to connect MySQL database to execute
query”.
[12]
http://www.javaworkspace.com/connectdatabase/connectMysql.do,
“CONNECT TO MYSQL 5.1”.
[13]
 http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSS
FDataFormat.html, “Class HSSFDataFormat”.
[14]
 http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSS
FRichTextString.html “ Class HSSFRichTextString”.
[15] http://poi.apache.org/spreadsheet/ ,“POI-HSSF and POI-XSSF
– Java API To Access Microsoft Excel Format Files”.
[16]
 http://docs.oracle.com/cd/B10501_01/server.920/a96652/ch02.ht
m, “What Is the Import Utility?”.



