International Journal of Electrical, Electronics and Data Communication (IJEEDC)
eISSN:2320-2084 , pISSN:2321-2950
Follow Us On :
current issue
Volume-12,Issue-4  ( Apr, 2024 )
  1. Volume-12,Issue-3  ( Mar, 2024 )
  2. Volume-12,Issue-2  ( Feb, 2024 )
  3. Volume-12,Issue-1  ( Jan, 2024 )

Statistics report
Jul. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 136
Paper Published : 1737
No. of Authors : 4816
  Journal Paper

Paper Title :
Vulnerabilities of SCADA Systems and its Impact on Cyber Security

Author :Soumya Shrivastava, Zia Saquib, Seema Shah

Article Citation :Soumya Shrivastava ,Zia Saquib ,Seema Shah , (2018 ) " Vulnerabilities of SCADA Systems and its Impact on Cyber Security " , International Journal of Electrical, Electronics and Data Communication (IJEEDC) , pp. 26-30, Volume-6,Issue-6

Abstract : Supervisory control and data acquisition (SCADA) systems have become a salient part in controlling critical infrastructures, such as power plants, energy grids, and water distribution systems. In the past decades, these systems were isolated and use proprietary software, operating systems, and protocols. In recent years, SCADA systems have been interfaced with enterprise systems, which therefore exposed them to the vulnerabilities of the Internet and the security threats. Traditional security solutions (e.g., firewalls, antivirus software, and intrusion detection systems) cannot fully protect SCADA systems, because they have different requirements. This paper presents an innovative intrusion detection approach to detect SCADA tailored attacks. This is based on a data-driven clustering technique of process parameters, which automatically identifies the normal and critical states of a given system. Later, it extracts proximity-based detection rules from the identified states for monitoring purposes. The effectiveness of the proposed approach is tested by conducting experiments on eight data sets that consist of process parameters’ values. The empirical results demonstrated an average accuracy of 98% in automatically identifying the critical states, while facilitating the monitoring of the SCADA system. Keywords - Classification, Clustering, IDS, SCADA Security

Type : Research paper

Published : Volume-6,Issue-6


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 60
| Published on 2018-08-13
IRAJ Other Journals
IJEEDC updates
Volume-12,Issue-4(April ,2024) Want to join us ? CLick here
The Conference World



Technical Editor, IJEEDC
Department of Journal and Publication
Plot no. 30, Dharma Vihar,
Khandagiri, Bhubaneswar, Odisha, India, 751030
Mob/Whatsapp: +91-9040435740